示例#1
0
文件: spf.py 项目: ecaruyer/qspace
def matrix(r, theta, phi, radial_order=_default_radial_order, 
           angular_rank=_default_angular_rank, zeta=_default_zeta):
    """Returns the spherical polar Fourier observation matrix for a given set
    of points represented by their spherical coordinates.

    Parameters
    ----------
    r : array-like, shape (K, )
        The radii of the points in q-space where to compute the spherical 
        function.
    theta : array-like, shape (K, )
        The polar angles of the points in q-space where to compute the 
        spherical function.
    phi : array-like, shape (K, )
        The azimuthal angles of the points in q-space where to compute the 
        spherical function.
    radial_order : int
        The radial truncation order of the SPF basis.
    angular_rank : int
        The truncation rank of the angular part of the SPF basis.
    
    Returns
    -------
    H : array-like, shape (K, R)
        The observation matrix corresponding to the point set passed as input.
    """
    K = r.shape[0]
    H = np.zeros((K, radial_order, sh.dimension(angular_rank)))
    b_n_j = SphericalPolarFourier(radial_order, angular_rank, zeta)
    for n in range(H.shape[1]):
        for j in range(H.shape[2]):
            b_n_j.coefficients[:] = 0
            b_n_j.coefficients[n, j] = 1.0
            H[:, n, j] = b_n_j.spherical_function(r, theta, phi)
    return H.reshape(K, dimension(radial_order, angular_rank))
示例#2
0
def index_i(n, l, m, radial_order, angular_rank):
    """Returns flattened index i based on radial rank, the angular degree l and
    order m.
    """
    dim_sh = sh.dimension(angular_rank)
    j = sh.index_j(l, m)
    return n * dim_sh + j
示例#3
0
文件: mspf.py 项目: oesteban/qspace
def Lambda(radial_order, angular_rank, zeta=_default_zeta):
    """The Laplace regularization is computed by matrix multiplication 
    (x-x0)^T Lambda (x-x0).
    """
    max_degree = 2 * (radial_order + 1)
    gammas = gamma(np.arange(max_degree) + 0.5)

    dim = dimension(radial_order, angular_rank)
    L = np.zeros((dim, dim))
    dim_sh = sh.dimension(angular_rank)
    for n1 in range(radial_order - 1):
        chi1 = chi(zeta, n1)
        for n2 in range(radial_order - 1):
            chi2 = chi(zeta, n2)
            for j1 in range(dim_sh):
                l1 = sh.index_l(j1)
                coeffs = __Tcoeffs(n1, n2, l1)
                degree = coeffs.shape[0]
                matrix_entry = chi1 * chi2 / (2 * np.sqrt(zeta)) * \
                    np.dot(coeffs, gammas[range(degree-1, -1, -1)])
                for j2 in range(dim_sh):
                    l2 = sh.index_l(j2)
                    if j1 == j2:
                        L[n1 * dim_sh + j1, n2 * dim_sh + j2] = matrix_entry
    return L
示例#4
0
文件: spf.py 项目: ecaruyer/qspace
 def __init__(self, radial_order=_default_radial_order, 
              angular_rank=_default_angular_rank, zeta=_default_zeta):
     self.radial_order = radial_order
     self.angular_rank = angular_rank
     self.zeta = zeta
     self.coefficients = np.zeros((self.radial_order,
                                   sh.dimension(self.angular_rank)))
示例#5
0
文件: spf.py 项目: ecaruyer/qspace
def index_i(n, l, m, radial_order, angular_rank):
    """Returns flattened index i based on radial rank, the angular degree l and
    order m.
    """
    dim_sh = sh.dimension(angular_rank)
    j = sh.index_j(l, m)
    return n * dim_sh + j
示例#6
0
文件: spf.py 项目: ecaruyer/qspace
    def odf_marginal(self):
        """Computes the marginal ODF from the q-space signal attenuation 
        expressed in the SPF basis, following [cheng-ghosh-etal:10].

        Returns
        -------
        spherical_harmonics : sh.SphericalHarmonics instance.
        """
        dim_sh = sh.dimension(self.angular_rank)
    
        sh_coefs = np.zeros(dim_sh)
        sh_coefs[0] = 1 / np.sqrt(4 * np.pi)
    
        for l in range(2, self.angular_rank + 1, 2):
            for m in range(-l, l + 1):
                j = sh.index_j(l, m)
                for n in range(1, self.radial_order):
                    partial_sum = 0.0
                    for i in range(1, n + 1):
                        partial_sum += (-1)**i * \
                          utils.binomial(n + 0.5, n - i) * 2**i / i
                    sh_coefs[j] += partial_sum * kappa(self.zeta, n) * \
                      self.coefficients[n, j] * \
                      legendre(l)(0) * l * (l + 1) / (8 * np.pi)
        return sh.SphericalHarmonics(sh_coefs)
示例#7
0
    def odf_marginal(self):
        """Computes the marginal ODF from the q-space signal attenuation 
        expressed in the SPF basis, following [cheng-ghosh-etal:10].

        Returns
        -------
        spherical_harmonics : sh.SphericalHarmonics instance.
        """
        dim_sh = sh.dimension(self.angular_rank)

        sh_coefs = np.zeros(dim_sh)
        sh_coefs[0] = 1 / np.sqrt(4 * np.pi)

        for l in range(2, self.angular_rank + 1, 2):
            for m in range(-l, l + 1):
                j = sh.index_j(l, m)
                for n in range(1, self.radial_order):
                    partial_sum = 0.0
                    for i in range(1, n + 1):
                        partial_sum += (-1)**i * \
                          utils.binomial(n + 0.5, n - i) * 2**i / i
                    sh_coefs[j] += partial_sum * kappa(self.zeta, n) * \
                      self.coefficients[n, j] * \
                      legendre(l)(0) * l * (l + 1) / (8 * np.pi)
        return sh.SphericalHarmonics(sh_coefs)
示例#8
0
def N(radial_order, angular_rank):
    "Returns the radial regularisation matrix as introduced by Assemlal."
    dim_sh = sh.dimension(angular_rank)
    diag_N = np.zeros((radial_order, dim_sh))
    for n in range(radial_order):
        diag_N[n, :] = (n * (n + 1))**2
    dim_spf = dimension(radial_order, angular_rank)
    return np.diag(diag_N.reshape(dim_spf))
示例#9
0
文件: spf.py 项目: ecaruyer/qspace
def N(radial_order, angular_rank):
    "Returns the radial regularisation matrix as introduced by Assemlal."
    dim_sh = sh.dimension(angular_rank)
    diag_N = np.zeros((radial_order, dim_sh))
    for n in range(radial_order):
        diag_N[n, :] = (n * (n + 1)) ** 2
    dim_spf = dimension(radial_order, angular_rank)
    return np.diag(diag_N.reshape(dim_spf))
示例#10
0
 def __init__(self,
              radial_order=_default_radial_order,
              angular_rank=_default_angular_rank,
              zeta=_default_zeta):
     self.radial_order = radial_order
     self.angular_rank = angular_rank
     self.zeta = zeta
     self.coefficients = np.zeros(
         (self.radial_order, sh.dimension(self.angular_rank)))
示例#11
0
文件: spf.py 项目: ecaruyer/qspace
def L(radial_order, angular_rank):
    "Returns the angular regularization matrix as introduced by Assemlal."
    dim_sh = sh.dimension(angular_rank)
    diag_L = np.zeros((radial_order, dim_sh))
    for j in range(dim_sh):
        l =  sh.l(j)
        diag_L[:, j] = (l * (l + 1)) ** 2
    dim_spf = dimension(radial_order, angular_rank)
    return np.diag(diag_L.reshape(dim_spf))
示例#12
0
def L(radial_order, angular_rank):
    "Returns the angular regularization matrix as introduced by Assemlal."
    dim_sh = sh.dimension(angular_rank)
    diag_L = np.zeros((radial_order, dim_sh))
    for j in range(dim_sh):
        l = sh.l(j)
        diag_L[:, j] = (l * (l + 1))**2
    dim_spf = dimension(radial_order, angular_rank)
    return np.diag(diag_L.reshape(dim_spf))
示例#13
0
文件: mspf.py 项目: oesteban/qspace
def v(radial_order, angular_rank, zeta=_default_zeta):
    "The vector x0 for Laplace regularization is -Lambda^-1 v."
    max_degree = 2 * (radial_order + 1)
    gammas = gamma(np.arange(max_degree) + 0.5)

    dim = dimension(radial_order, angular_rank)
    v = np.zeros(dim)
    dim_sh = sh.dimension(angular_rank)

    for n in range(radial_order - 1):
        chi1 = chi(zeta, n)
        coeffs = __Tcoeffs(n, -1, 0)
        degree = coeffs.shape[0]
        v[n * dim_sh] = chi1 / (2 * np.sqrt(zeta)) \
            * np.dot(coeffs, gammas[range(degree-1, -1, -1)])
    return v
示例#14
0
    def odf_tuch(self):
        """Computes the Tuch ODF from the q-space signal attenuation expressed
        in the SPF basis, following [cheng-ghosh-etal:10].

        Returns
        -------
        spherical_harmonics : sh.SphericalHarmonics instance.
        """
        dim_sh = sh.dimension(self.angular_rank)
        sh_coefs = np.zeros(dim_sh)
        for j in range(dim_sh):
            l = sh.index_l(j)
            for n in range(self.radial_order):
                partial_sum = 0.0
                for i in range(n):
                    partial_sum += utils.binomial(i - 0.5, i) * (-1)**(n - i)
                sh_coefs[j] += partial_sum * self.coefficients[n, j] \
                  * kappa(zeta, n)
            sh_coefs[j] = sh_coefs[j] * legendre(l)(0)
        return sh.SphericalHarmonics(sh_coefs)
示例#15
0
文件: spf.py 项目: ecaruyer/qspace
    def odf_tuch(self):
        """Computes the Tuch ODF from the q-space signal attenuation expressed
        in the SPF basis, following [cheng-ghosh-etal:10].

        Returns
        -------
        spherical_harmonics : sh.SphericalHarmonics instance.
        """
        dim_sh = sh.dimension(self.angular_rank)
        sh_coefs = np.zeros(dim_sh)
        for j in range(dim_sh):
            l = sh.index_l(j)
            for n in range(self.radial_order):
                partial_sum = 0.0
                for i in range(n):
                    partial_sum += utils.binomial(i - 0.5, i) * (-1)**(n - i)
                sh_coefs[j] += partial_sum * self.coefficients[n, j] \
                  * kappa(zeta, n)
            sh_coefs[j] = sh_coefs[j] * legendre(l)(0)
        return sh.SphericalHarmonics(sh_coefs)
示例#16
0
文件: mspf.py 项目: oesteban/qspace
def matrix(r,
           theta,
           phi,
           radial_order=_default_radial_order,
           angular_rank=_default_angular_rank,
           zeta=_default_zeta):
    """Returns the spherical polar Fourier observation matrix for a given set
    of points represented by their spherical coordinates.

    Parameters
    ----------
    r : array-like, shape (K, )
        The radii of the points in q-space where to compute the spherical 
        function.
    theta : array-like, shape (K, )
        The polar angles of the points in q-space where to compute the 
        spherical function.
    phi : array-like, shape (K, )
        The azimuthal angles of the points in q-space where to compute the 
        spherical function.
    radial_order : int
        The radial truncation order of the SPF basis.
    angular_rank : int
        The truncation rank of the angular part of the SPF basis.
    zeta : float
        The scale parameter of the mSPF basis.
    
    Returns
    -------
    H : array-like, shape (K, R)
        The observation matrix corresponding to the point set passed as input.
    """
    K = r.shape[0]
    H = np.zeros((K, radial_order - 1, sh.dimension(angular_rank)))
    b_n_j = ModifiedSphericalPolarFourier(radial_order, angular_rank, zeta)
    for n in range(H.shape[1]):
        for j in range(H.shape[2]):
            b_n_j.coefficients[:] = 0
            b_n_j.coefficients[n, j] = 1.0
            H[:, n, j] = b_n_j.spherical_function(r, theta, phi)
    return H.reshape(K, dimension(radial_order, angular_rank))
示例#17
0
def dimension(radial_order, angular_rank):
    return radial_order * sh.dimension(angular_rank)
示例#18
0
def index_n(i, radial_order, angular_rank):
    "Returns radial rank n corresponding to flattened index i."
    dim_sh = sh.dimension(angular_rank)
    return i // dim_sh
示例#19
0
def index_m(i, radial_order, angular_rank):
    "Returns angular order m corresponding to flattened index i."
    dim_sh = sh.dimension(angular_rank)
    j = i % dim_sh
    return sh.index_m(j)
示例#20
0
文件: dspf.py 项目: ecaruyer/qspace
def dimension(radial_order, angular_rank):
    return radial_order * sh.dimension(angular_rank)
示例#21
0
文件: spf.py 项目: ecaruyer/qspace
def index_m(i, radial_order, angular_rank):
    "Returns angular order m corresponding to flattened index i."
    dim_sh = sh.dimension(angular_rank)
    j = i % dim_sh
    return sh.index_m(j)
示例#22
0
文件: spf.py 项目: ecaruyer/qspace
def index_n(i, radial_order, angular_rank):
    "Returns radial rank n corresponding to flattened index i."
    dim_sh = sh.dimension(angular_rank)
    return i // dim_sh
示例#23
0
文件: mspf.py 项目: oesteban/qspace
def dimension(radial_order, angular_rank):
    "Returns the dimension of the truncated mSPF basis."
    return (radial_order - 1) * sh.dimension(angular_rank)
示例#24
0
文件: spf.py 项目: ecaruyer/qspace
def dimension(radial_order, angular_rank):
    "Returns the dimension of the truncated SPF basis."
    return radial_order * sh.dimension(angular_rank)