示例#1
0
    def getDip(self):
        """
        Return average dip of all quadrilaterals in the rupture.

        Returns:
           float: Average dip in degrees.

        """
        dipsum = 0.0
        for quad in self._quadrilaterals:
            N = utils.get_quad_normal(quad)
            V = utils.get_vertical_vector(quad)
            dipsum = dipsum + np.degrees(np.arccos(Vector.dot(N, V)))
        dip = dipsum / len(self._quadrilaterals)
        return dip
示例#2
0
    def __computeXiPrime(self):
        """
        Computes the xi' value.
        """
        hypo_ecef = Vector.fromPoint(
            geo.point.Point(self._hyp.longitude, self._hyp.latitude,
                            self._hyp.depth))

        slat = self._lat
        slon = self._lon

        # Convert site to ECEF:
        site_ecef_x = np.ones_like(slat)
        site_ecef_y = np.ones_like(slat)
        site_ecef_z = np.ones_like(slat)

        # Make a 3x(#number of sites) matrix of site locations
        # (rows are x, y, z) in ECEF
        site_ecef_x, site_ecef_y, site_ecef_z = latlon2ecef(
            slat, slon, np.zeros(slon.shape))
        site_mat = np.array([
            np.reshape(site_ecef_x, (-1, )),
            np.reshape(site_ecef_y, (-1, )),
            np.reshape(site_ecef_z, (-1, ))
        ])

        xi_prime_unscaled = np.zeros_like(slat)

        # Normalize by total number of subruptures. For mtype == 1, the number
        # of subruptures will vary with site and be different for xi_s and
        # xi_p, so keep two variables and sum them for each quad.
        nsubs = np.zeros(np.product(slat.shape))
        nsubp = np.zeros(np.product(slat.shape))

        xi_prime_s = np.zeros(np.product(slat.shape))
        xi_prime_p = np.zeros(np.product(slat.shape))

        for k in range(len(self._rup.getQuadrilaterals())):
            # Select a quad
            q = self._rup.getQuadrilaterals()[k]

            # Quad mesh (ECEF coords)
            mesh = utils.get_quad_mesh(q, self._dx)

            # Rupture plane normal vector (ECEF coords)
            rpnv = utils.get_quad_normal(q)
            rpnvcol = np.array([[rpnv.x], [rpnv.y], [rpnv.z]])

            cp_mat = np.array([
                np.reshape(mesh['cpx'], (-1, )),
                np.reshape(mesh['cpy'], (-1, )),
                np.reshape(mesh['cpz'], (-1, ))
            ])

            # Compute matrix of p vectors
            hypcol = np.array([[hypo_ecef.x], [hypo_ecef.y], [hypo_ecef.z]])
            pmat = cp_mat - hypcol

            # Project pmat onto quad
            ndotp = np.sum(pmat * rpnvcol, axis=0)
            pmat = pmat - ndotp * rpnvcol

            mag = np.sqrt(np.sum(pmat * pmat, axis=0))
            pmatnorm = pmat / mag  # like r1

            # According to Rowshandel:
            #   "The choice of the +/- sign in the above equations
            #    depends on the (along-the-strike and across-the-dip)
            #    location of the rupturing sub-fault relative to the
            #    location of the hypocenter."
            # and:
            #   "for the along the strike component of the slip unit
            #    vector, the choice of the sign should result in the
            #    slip unit vector (s) being exactly the same as  the
            #    rupture unit vector (p) for a pure strike-slip case"

            # Strike slip and dip slip components of unit slip vector
            # (ECEF coords)
            ds_mat, ss_mat = _get_quad_slip_ds_ss(q, self._rake, cp_mat,
                                                  pmatnorm)

            slpmat = (ds_mat + ss_mat)
            mag = np.sqrt(np.sum(slpmat * slpmat, axis=0))
            slpmatnorm = slpmat / mag

            # Loop over sites
            for i in range(site_mat.shape[1]):
                sitecol = np.array([[site_mat[0, i]], [site_mat[1, i]],
                                    [site_mat[2, i]]])

                qmat = sitecol - cp_mat  # 3x(ni*nj), like r2
                mag = np.sqrt(np.sum(qmat * qmat, axis=0))
                qmatnorm = qmat / mag

                # Propagation dot product
                pdotqraw = np.sum(pmatnorm * qmatnorm, axis=0)

                # Slip vector dot product
                sdotqraw = np.sum(slpmatnorm * qmatnorm, axis=0)

                if self._mtype == 1:
                    # Only sum over (+) directivity effect subruptures

                    # xi_p_prime
                    pdotq = pdotqraw.clip(min=0)
                    nsubp[i] = nsubp[i] + np.sum(pdotq > 0)

                    # xi_s_prime
                    sdotq = sdotqraw.clip(min=0)
                    nsubs[i] = nsubs[i] + np.sum(sdotq > 0)

                elif self._mtype == 2:
                    # Sum over contributing subruptures

                    # xi_p_prime
                    pdotq = pdotqraw
                    nsubp[i] = nsubp[i] + cp_mat.shape[1]

                    # xi_s_prime
                    sdotq = sdotqraw
                    nsubs[i] = nsubs[i] + cp_mat.shape[1]

                # Normalize by n sub ruptures later
                xi_prime_s[i] = xi_prime_s[i] + np.sum(sdotq)
                xi_prime_p[i] = xi_prime_p[i] + np.sum(pdotq)

        # Apply a water level to nsubp and nsubs to avoid division by
        # zero. This should only occur when the numerator is also zero
        # and so the resulting value should be zero.
        nsubs = np.maximum(nsubs, 1)
        nsubp = np.maximum(nsubp, 1)

        # We are outside the 'k' loop over nquads.
        # o Normalize xi_prime_s and xi_prime_p
        # o Reshape them
        # o Add them together with the 'a' weights
        xi_prime_tmp = (self._a_weight) * (xi_prime_s / nsubs) + \
                       (1 - self._a_weight) * (xi_prime_p / nsubp)
        xi_prime_unscaled = xi_prime_unscaled + \
            np.reshape(xi_prime_tmp, slat.shape)

        # Scale so that xi_prime has range (0, 1)
        if self._mtype == 1:
            xi_prime = xi_prime_unscaled
        elif self._mtype == 2:
            xi_prime = 0.5 * (xi_prime_unscaled + 1)

        self._xi_prime = xi_prime
示例#3
0
    def getDepthAtPoint(self, lat, lon):
        SMALL_DISTANCE = 2e-03  # 2 meters
        depth = np.nan

        tmp, _ = self.computeRjb(np.array([lon]), np.array([lat]),
                                 np.array([0]))
        if tmp > SMALL_DISTANCE:
            return depth

        i = 0
        imin = -1
        dmin = 9999999999999999
        for quad in self.getQuadrilaterals():
            pX = Vector.fromPoint(Point(lon, lat, 0))
            points = np.reshape(np.array([pX.x, pX.y, pX.z]), (1, 3))
            rjb = utils._quad_distance(quad, points, horizontal=True)
            if rjb[0][0] < dmin:
                dmin = rjb[0][0]
                imin = i
            i += 1

        quad = self._quadrilaterals[imin]
        P0, P1, P2, P3 = quad
        # project the quad and the point in question to orthographic defined by
        # quad
        xmin = np.min([P0.x, P1.x, P2.x, P3.x])
        xmax = np.max([P0.x, P1.x, P2.x, P3.x])
        ymin = np.min([P0.y, P1.y, P2.y, P3.y])
        ymax = np.max([P0.y, P1.y, P2.y, P3.y])
        proj = OrthographicProjection(xmin, xmax, ymax, ymin)

        # project each vertex of quad (at 0 depth)
        s0x, s0y = proj(P0.x, P0.y)
        s1x, s1y = proj(P1.x, P1.y)
        s2x, s2y = proj(P2.x, P2.y)
        s3x, s3y = proj(P3.x, P3.y)
        sxx, sxy = proj(lon, lat)

        # turn these to vectors
        s0 = Vector(s0x, s0y, 0)
        s1 = Vector(s1x, s1y, 0)
        s3 = Vector(s3x, s3y, 0)
        sx = Vector(sxx, sxy, 0)

        # Compute vector from s0 to s1
        s0s1 = s1 - s0
        # Compute the vector from s0 to s3
        s0s3 = s3 - s0
        # Compute the vector from s0 to sx
        s0sx = sx - s0

        # cross products
        s0normal = s0s3.cross(s0s1)
        dd = s0s1.cross(s0normal)
        # normalize dd (down dip direction)
        ddn = dd.norm()
        # dot product
        sxdd = ddn.dot(s0sx)

        # get width of quad (convert from km to m)
        w = utils.get_quad_width(quad) * 1000

        # Get weights for top and bottom edge depths
        N = utils.get_quad_normal(quad)
        V = utils.get_vertical_vector(quad)
        dip = np.degrees(np.arccos(Vector.dot(N, V)))
        ws = (w * np.cos(np.radians(dip)))
        wtt = (ws - sxdd) / ws
        wtb = sxdd / ws

        # Compute the depth of of the plane at Px:
        depth = wtt * P0.z + wtb * P3.z * 1000

        return depth
示例#4
0
    def __computeXiPrime(self):
        """
        Computes the xi' value.
        """
        hypo_ecef = Vector.fromPoint(geo.point.Point(
            self._hyp.longitude, self._hyp.latitude, self._hyp.depth))

        slat = self._lat
        slon = self._lon

        # Convert site to ECEF:
        site_ecef_x = np.ones_like(slat)
        site_ecef_y = np.ones_like(slat)
        site_ecef_z = np.ones_like(slat)

        # Make a 3x(#number of sites) matrix of site locations
        # (rows are x, y, z) in ECEF
        site_ecef_x, site_ecef_y, site_ecef_z = latlon2ecef(
            slat, slon, np.zeros(slon.shape))
        site_mat = np.array([np.reshape(site_ecef_x, (-1,)),
                             np.reshape(site_ecef_y, (-1,)),
                             np.reshape(site_ecef_z, (-1,))])

        xi_prime_unscaled = np.zeros_like(slat)

        # Normalize by total number of subruptures. For mtype == 1, the number
        # of subruptures will vary with site and be different for xi_s and
        # xi_p, so keep two variables and sum them for each quad.
        nsubs = np.zeros(np.product(slat.shape))
        nsubp = np.zeros(np.product(slat.shape))

        xi_prime_s = np.zeros(np.product(slat.shape))
        xi_prime_p = np.zeros(np.product(slat.shape))

        for k in range(len(self._rup.getQuadrilaterals())):
            # Select a quad
            q = self._rup.getQuadrilaterals()[k]

            # Quad mesh (ECEF coords)
            mesh = utils.get_quad_mesh(q, self._dx)

            # Rupture plane normal vector (ECEF coords)
            rpnv = utils.get_quad_normal(q)
            rpnvcol = np.array([[rpnv.x],
                                [rpnv.y],
                                [rpnv.z]])

            cp_mat = np.array([np.reshape(mesh['cpx'], (-1,)),
                               np.reshape(mesh['cpy'], (-1,)),
                               np.reshape(mesh['cpz'], (-1,))])

            # Compute matrix of p vectors
            hypcol = np.array([[hypo_ecef.x],
                               [hypo_ecef.y],
                               [hypo_ecef.z]])
            pmat = cp_mat - hypcol

            # Project pmat onto quad
            ndotp = np.sum(pmat * rpnvcol, axis=0)
            pmat = pmat - ndotp * rpnvcol

            mag = np.sqrt(np.sum(pmat * pmat, axis=0))
            pmatnorm = pmat / mag  # like r1

            # According to Rowshandel:
            #   "The choice of the +/- sign in the above equations
            #    depends on the (along-the-strike and across-the-dip)
            #    location of the rupturing sub-fault relative to the
            #    location of the hypocenter."
            # and:
            #   "for the along the strike component of the slip unit
            #    vector, the choice of the sign should result in the
            #    slip unit vector (s) being exactly the same as  the
            #    rupture unit vector (p) for a pure strike-slip case"

            # Strike slip and dip slip components of unit slip vector
            # (ECEF coords)
            ds_mat, ss_mat = _get_quad_slip_ds_ss(
                q, self._rake, cp_mat, pmatnorm)

            slpmat = (ds_mat + ss_mat)
            mag = np.sqrt(np.sum(slpmat * slpmat, axis=0))
            slpmatnorm = slpmat / mag

            # Loop over sites
            for i in range(site_mat.shape[1]):
                sitecol = np.array([[site_mat[0, i]],
                                    [site_mat[1, i]],
                                    [site_mat[2, i]]])

                qmat = sitecol - cp_mat  # 3x(ni*nj), like r2
                mag = np.sqrt(np.sum(qmat * qmat, axis=0))
                qmatnorm = qmat / mag

                # Propagation dot product
                pdotqraw = np.sum(pmatnorm * qmatnorm, axis=0)

                # Slip vector dot product
                sdotqraw = np.sum(slpmatnorm * qmatnorm, axis=0)

                if self._mtype == 1:
                    # Only sum over (+) directivity effect subruptures

                    # xi_p_prime
                    pdotq = pdotqraw.clip(min=0)
                    nsubp[i] = nsubp[i] + np.sum(pdotq > 0)

                    # xi_s_prime
                    sdotq = sdotqraw.clip(min=0)
                    nsubs[i] = nsubs[i] + np.sum(sdotq > 0)

                elif self._mtype == 2:
                    # Sum over contributing subruptures

                    # xi_p_prime
                    pdotq = pdotqraw
                    nsubp[i] = nsubp[i] + cp_mat.shape[1]

                    # xi_s_prime
                    sdotq = sdotqraw
                    nsubs[i] = nsubs[i] + cp_mat.shape[1]

                # Normalize by n sub ruptures later
                xi_prime_s[i] = xi_prime_s[i] + np.sum(sdotq)
                xi_prime_p[i] = xi_prime_p[i] + np.sum(pdotq)

        # Apply a water level to nsubp and nsubs to avoid division by
        # zero. This should only occur when the numerator is also zero
        # and so the resulting value should be zero.
        nsubs = np.maximum(nsubs, 1)
        nsubp = np.maximum(nsubp, 1)

        # We are outside the 'k' loop over nquads.
        # o Normalize xi_prime_s and xi_prime_p
        # o Reshape them
        # o Add them together with the 'a' weights
        xi_prime_tmp = (self._a_weight) * (xi_prime_s / nsubs) + \
                       (1 - self._a_weight) * (xi_prime_p / nsubp)
        xi_prime_unscaled = xi_prime_unscaled + \
            np.reshape(xi_prime_tmp, slat.shape)

        # Scale so that xi_prime has range (0, 1)
        if self._mtype == 1:
            xi_prime = xi_prime_unscaled
        elif self._mtype == 2:
            xi_prime = 0.5 * (xi_prime_unscaled + 1)

        self._xi_prime = xi_prime