def load_trial(trial_path): """ @param trial_path: full path or relative path from shape_completion_training/trials @type trial_path: str @return: """ trial_path = pathlib.Path(trial_path) if not trial_path.is_absolute(): r = rospkg.RosPack() trial_path = pathlib.Path( r.get_path('shape_completion_training')) / "trials" / trial_path if not trial_path.is_dir(): raise ValueError( "Cannot load, the path {} is not an existing directory".format( trial_path)) group_name = get_group_name(trial_path) params = default_params.get_default_params(group_name) params_filename = trial_path / 'params.json' with params_filename.open("r") as params_file: params.update(json.load(params_file)) return trial_path, params
import argparse # params = { # 'batch_size': 1500, # 'network': 'RealNVP', # 'dim': 24, # 'num_masked': 12, # 'learning_rate': 1e-5, # 'translation_pixel_range_x': 10, # 'translation_pixel_range_y': 10, # 'translation_pixel_range_z': 10, # } if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process args for training") parser.add_argument('--tmp', action='store_true') parser.add_argument('--group', default=None) args = parser.parse_args() params = default_params.get_default_params(group_name=args.group) params['load_bb_only'] = True data_supervisor = shape_completion_training.utils.dataset_loader.get_dataset_supervisor( params['dataset']) if args.tmp: mr = ModelRunner(training=True, params=params, group_name=None) else: mr = ModelRunner(training=True, params=params, group_name=args.group) mr.train_and_test(data_supervisor)
from shape_completion_training.utils.tf_utils import log_normal_pdf, stack_known, sample_gaussian from shape_completion_training.voxelgrid.metrics import chamfer_distance from shape_completion_visualization.voxelgrid_publisher import VoxelgridPublisher, PointcloudPublisher """ Publish object pointclouds for use in gpu_voxels planning """ ARGS = None VG_PUB = None PT_PUB = None model_runner = None dataset_params = None default_dataset_params = default_params.get_default_params() default_translations = { 'translation_pixel_range_x': 0, 'translation_pixel_range_y': 0, 'translation_pixel_range_z': 0, } Transformer = None def wip_enforce_contact(elem): inference = model_runner.model(elem) VG_PUB.publish_inference(inference) pssnet = model_runner.model latent = tf.Variable(pssnet.sample_latent(elem))