def main(): args = parse_args() num_gpus = torch.cuda.device_count() cfg = importlib.import_module("shaper.config.{:s}".format(args.task)).cfg cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) purge_cfg(cfg) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: config_path = osp.splitext(args.config_file)[0] config_path = config_path.replace("configs", "outputs") output_dir = output_dir.replace('@', config_path) mkdir(output_dir) logger = setup_logger("shaper", output_dir, prefix="test_part_seg") logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) logger.info("Running with config:\n{}".format(cfg)) test(cfg, output_dir)
def main(): args = parse_args() # Load the configuration cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) purge_cfg(cfg) cfg.freeze() output_dir = cfg.OUTPUT_DIR # Replace '@' with config path if output_dir: config_path = osp.splitext(args.config_file)[0] config_path = config_path.replace("configs", "outputs") output_dir = output_dir.replace('@', config_path) mkdir(output_dir) logger = setup_logger("shaper", output_dir, prefix="train") logger.info("Using {} GPUs".format(torch.cuda.device_count())) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) logger.info("Running with config:\n{}".format(cfg)) assert cfg.TASK == "part_segmentation" train(cfg, output_dir)
def main(): args = parse_args() # Load the configuration cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) purge_cfg(cfg) cfg.freeze() output_dir = cfg.OUTPUT_DIR # Replace '@' with config path if output_dir: config_path = osp.splitext(args.config_file)[0] config_path = config_path.replace("configs", "outputs") output_dir = output_dir.replace('@', config_path) mkdir(output_dir) logger = setup_logger("shaper", output_dir, prefix="train") logger.info("Using {} GPUs".format(torch.cuda.device_count())) logger.info(args) # logger.info("Collecting env info (might take some time)") # logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) # with open(args.config_file, "r") as fid: # config_str = "\n" + fid.read() # logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) assert cfg.TASK == "classification" train(cfg, output_dir)