if analyze_organelle == 'nucleoli': nuclear_pd.to_csv('%s/data_nuclear.txt' % storage_path, index=False, sep='\t') # images dis.plot_offset_map(pointer_pd, fitting_mode, 'bg', storage_path) # offset map dis.plot_raw_intensity(pointer_pd, ctrl_pd_ft, fitting_mode, 'bg', storage_path) # raw intensity dis.plot_pb_factor(pointer_pd, 'bg', storage_path) # photobleaching factor dis.plot_corrected_intensity( pointer_pd, fitting_mode, 'bg', storage_path) # intensity after dual correction dis.plot_normalized_frap(pointer_pd, fitting_mode, 'bg', storage_path) # normalized FRAP curves # normalized FRAP curves after filtering with fitting # individual normalized FRAP curves with fitting dis.plot_frap_fitting(pointer_pd, fitting_mode, 'bg', storage_path) else: # -------------------------- # OUTPUT # -------------------------- print("### Export data ...") storage_path = save_path if not os.path.exists(storage_path): os.makedirs(storage_path) # data_log data_log.to_csv('%s/data_log.txt' % storage_path,
'optimal_mobile_fraction': pointer_ft_pd['optimal_mobile_fraction'], 'optimal_t_half': pointer_ft_pd['optimal_t_half'], 'optimal_slope': pointer_ft_pd['optimal_slope'] }) pointer_out.to_csv('%s/data.txt' % storage_path, index=False, sep='\t') # images dis.plot_offset_map(pointer_pd, storage_path) # offset map dis.plot_raw_intensity(pointer_pd, ctrl_pd_ft, storage_path) # raw intensity dis.plot_pb_factor(pointer_pd, storage_path) # photobleaching factor dis.plot_corrected_intensity(pointer_pd, storage_path) # intensity after dual correction dis.plot_normalized_frap(pointer_pd, storage_path) # normalized FRAP curves dis.plot_frap_fitting( pointer_pd, storage_path) # normalized FRAP curves after filtering with fitting # individual normalized FRAP curves with fitting # -------------------------- # OUTPUT DISPLAY # -------------------------- if display_mode == 'Y': print("### Output display ...") with napari.gui_qt(): # embed mpl widget in napari viewer mpl_widget = FigureCanvas(Figure(figsize=(5, 3))) [ax1, ax2, ax3] = mpl_widget.figure.subplots(nrows=1, ncols=3)