if analyze_organelle == 'nucleoli':
                nuclear_pd.to_csv('%s/data_nuclear.txt' % storage_path,
                                  index=False,
                                  sep='\t')

            # images
            dis.plot_offset_map(pointer_pd, fitting_mode, 'bg',
                                storage_path)  # offset map
            dis.plot_raw_intensity(pointer_pd, ctrl_pd_ft, fitting_mode, 'bg',
                                   storage_path)  # raw intensity
            dis.plot_pb_factor(pointer_pd, 'bg',
                               storage_path)  # photobleaching factor
            dis.plot_corrected_intensity(
                pointer_pd, fitting_mode, 'bg',
                storage_path)  # intensity after dual correction
            dis.plot_normalized_frap(pointer_pd, fitting_mode, 'bg',
                                     storage_path)  # normalized FRAP curves
            # normalized FRAP curves after filtering with fitting
            # individual normalized FRAP curves with fitting
            dis.plot_frap_fitting(pointer_pd, fitting_mode, 'bg', storage_path)

        else:
            # --------------------------
            # OUTPUT
            # --------------------------
            print("### Export data ...")

            storage_path = save_path
            if not os.path.exists(storage_path):
                os.makedirs(storage_path)
            # data_log
            data_log.to_csv('%s/data_log.txt' % storage_path,
    'optimal_mobile_fraction':
    pointer_ft_pd['optimal_mobile_fraction'],
    'optimal_t_half':
    pointer_ft_pd['optimal_t_half'],
    'optimal_slope':
    pointer_ft_pd['optimal_slope']
})
pointer_out.to_csv('%s/data.txt' % storage_path, index=False, sep='\t')

# images
dis.plot_offset_map(pointer_pd, storage_path)  # offset map
dis.plot_raw_intensity(pointer_pd, ctrl_pd_ft, storage_path)  # raw intensity
dis.plot_pb_factor(pointer_pd, storage_path)  # photobleaching factor
dis.plot_corrected_intensity(pointer_pd,
                             storage_path)  # intensity after dual correction
dis.plot_normalized_frap(pointer_pd, storage_path)  # normalized FRAP curves
dis.plot_frap_fitting(
    pointer_pd,
    storage_path)  # normalized FRAP curves after filtering with fitting
# individual normalized FRAP curves with fitting

# --------------------------
# OUTPUT DISPLAY
# --------------------------
if display_mode == 'Y':
    print("### Output display ...")

    with napari.gui_qt():
        # embed mpl widget in napari viewer
        mpl_widget = FigureCanvas(Figure(figsize=(5, 3)))
        [ax1, ax2, ax3] = mpl_widget.figure.subplots(nrows=1, ncols=3)