rearrangement = False

    # deletion = Interval("chr" + chr_num, start, end)
    write_all_chrms_in_file = False  #set True if you want write training file consisting several chromosomes
    fill_empty_contacts = False  #set True if you want use all contacts in region, without empty contacts

    logging.getLogger(__name__).debug("Using input folder " + input_folder)

    # Read contacts data
    genome = fastaReader(args['path_to_genome'],
                         useOnlyChromosomes=[chromosome])  #str(chr_num)])
    genome = genome.read_data()
    print(genome.data)
    now = datetime.datetime.now()
    params.contacts_reader = hicReader(fname=input_folder + "/" + cell_type +
                                       "/" + hic_name,
                                       genome=genome,
                                       binsize=params.binsize)
    params.contacts_reader = params.contacts_reader.read_data(
        fill_empty_contacts=fill_empty_contacts, noDump=False)

    if params.use_only_contacts_with_CTCF == "cont_with_CTCF":
        params.proportion = 1
        params.contacts_reader.use_contacts_with_CTCF(CTCFfile=input_folder+"/" + cell_type+"/CTCF/"+CTCF_file_name,
                                                        maxdist=params.maxdist,
                                                        proportion=params.proportion,
                                                        keep_only_orient=params.keep_only_orient,
                                                        CTCForientfile=input_folder + "/" + cell_type + \
                                                                       "/CTCF/"+CTCF_file_name+"-orient.bed")
        params.use_only_contacts_with_CTCF += str(
            params.contacts_reader.conts_with_ctcf)
        #make deletion
        params.sample_size = 100  # how many contacts write to file
        params.conttype = conttype
        params.max_cpus = 11
        params.keep_only_orient = False  # set True if you want use only CTCF with orient
        #params.use_only_contacts_with_CTCF = "cont_with_CTCF"   # "cont_with_CTCF"
        params.use_only_contacts_with_CTCF = "no"
        # use this option to change proportion
        # of contacts with nearest ctcf sites in training datasets

        write_all_chrms_in_file = True  # set True if you have train with few chromosomes. Need for writing different chromosomes in the same file

        fill_empty_contacts = False
        logging.getLogger(__name__).debug("Using input folder " + input_folder)

        # Read contacts data
        params.contacts_reader = ContactsReader()
        contacts_files = []
        # set path to the coefficient file and to contacts files
        # contacts file format: bin_start--bin_end--contact_count
        [
            contacts_files.append(input_folder + "chr" + chr + ".5MB.K562." +
                                  params.conttype) for chr in chr_nums
        ]
        params.contacts_reader.read_files(
            contacts_files,
            coeff_fname=input_folder + "coefficient." + cell_type +
            ".25000.txt",
            max_cpus=params.max_cpus,
            fill_empty_contacts=fill_empty_contacts,
            maxdist=params.maxdist,
            expected_binsize=25000)
        write_all_chrms_in_file = False  #set True if you want write training file consisting several chromosomes
        fill_empty_contacts = True  #set True if you want use all contacts in region, without empty contacts

        logging.getLogger(__name__).debug("Using input folder " + input_folder)

        # Read contacts data
        genome = fastaReader(input_folder + "sequence/hg38/hg38.fa",
                             name="hg38",
                             useOnlyChromosomes=["chr3"])
        genome = genome.read_data()
        # print(genome)
        # print(genome.data.keys())
        now = datetime.datetime.now()
        params.contacts_reader = hicReader(fname=input_folder +
                                           "H1/4DNFI2TK7L2F.hic",
                                           genome=genome,
                                           binsize=1000)
        # params.contacts_reader = hicReader(fname=input_folder + "H1/control.chr4.50KBhic", genome=genome, binsize=1000)
        params.contacts_reader = params.contacts_reader.read_data()

        if params.use_only_contacts_with_CTCF == "cont_with_CTCF":
            params.proportion = 1
            params.contacts_reader.use_contacts_with_CTCF(
                CTCFfile=input_folder +
                "H1/CTCF/CTCF_H1_conservative_peaks.bed.gz",
                maxdist=params.maxdist,
                proportion=params.proportion,
                keep_only_orient=params.keep_only_orient,
                CTCForientfile=input_folder +
                "H1/CTCF/CTCF_H1_conservative_peaks_orient.bed")
            params.use_only_contacts_with_CTCF += str(