示例#1
0
def test_fit_plot_see_errorbar_warnings(caplog, statClass, flag):
    """Do we see the warning when expected - fit plot?

    This looks for the 'The displayed errorbars have been supplied with
    the data or calculated using chi2xspecvar; the errors are not used in
    fits with <>' message. These are messages displayed to the Sherpa
    logger at the warning level, rather than using the warnings module,
    so the Sherpa capture_all_warnings test fixture does not come into
    play.

    Parameters
    ----------
    stat : sherpa.stats.Stat instance
    flag : bool
        True if the warning should be created, False otherwise

    """

    d = example_data()
    m = example_model()

    dplot = DataPlot()
    mplot = ModelPlot()
    fplot = FitPlot()

    # Internal check: this test requires that either yerrorbars is set
    # to True, or not included, in the plot preferences. So check this
    # assumption.
    #
    # I am skipping model plot here, since it is assumed that there
    # are no errors on the model.
    #
    prefname = 'yerrorbars'
    for plot in [dplot, fplot]:
        prefs = plot.plot_prefs
        assert (prefname not in prefs) or prefs[prefname]

    stat = statClass()

    # Ensure that the logging is set to WARNING since there
    # appears to be some test that changes it to ERROR.
    #
    with caplog.at_level(logging.INFO, logger='sherpa'):

        dplot.prepare(d, stat)
        mplot.prepare(d, m, stat)
        fplot.prepare(dplot, mplot)

    if flag:
        nwarn = 1
    else:
        nwarn = 0

    check_for_warning(caplog, nwarn, stat.name)
示例#2
0
def test_fit_residstyle_plot_no_errors_no_errorbar_warnings(
        caplog, plotClass, statClass):
    """Should not see warnings when no error bars are drawn (See #621).

    This is a copy of test_fit_residstyle_plot_see_errorbar_warnings
    except that the 'yerrorbars' preference setting for all plots is
    'False'.

    Parameters
    ----------
    plotClass : {sherpa.plot.ResidPlot, sherpa.plot.RatioPlot}
        The plot to test.
    statClass : sherpa.stats.Stat instance

    Notes
    -----
    Is this an accurate example of how 'plot_fit_resid' is created?
    """

    d = example_data()
    m = example_model()

    dplot = DataPlot()
    mplot = ModelPlot()
    fplot = FitPlot()
    rplot = plotClass()

    jplot = JointPlot()

    prefname = 'yerrorbars'
    for plot in [dplot, rplot]:
        prefs = plot.plot_prefs
        prefs[prefname] = False

    stat = statClass()

    # Ensure that the logging is set to WARNING since there
    # appears to be some test that changes it to ERROR.
    #
    with caplog.at_level(logging.INFO, logger='sherpa'):

        dplot.prepare(d, stat)
        mplot.prepare(d, m, stat)
        fplot.prepare(dplot, mplot)

        rplot.prepare(d, m, stat)

        jplot.plottop(fplot)
        jplot.plotbot(rplot)

    check_for_warning(caplog, 0, stat.name)
示例#3
0
文件: index.py 项目: wsf1990/sherpa
d.notice()
dump("sinfo1.numpoints")
dump("sinfo2.numpoints")

res = f.fit()
if res.succeeded: print("Fit succeeded")
if not res.succeeded: print("**** ERRRR, the fit failed folks")

report("res.format()")
report("res")

from sherpa.plot import DataPlot, ModelPlot
dplot = DataPlot()
dplot.prepare(f.data)
mplot = ModelPlot()
mplot.prepare(f.data, f.model)
dplot.plot()
mplot.overplot()

savefig("data_model_c0_c2.png")

dump("f.method.name")
original_method = f.method

from sherpa.optmethods import NelderMead
f.method = NelderMead()
resn = f.fit()
print("Change in statistic: {}".format(resn.dstatval))

fit2 = Fit(d, mdl, method=NelderMead())
fit2.fit()
示例#4
0
        #normalize spliced intensities & invert
        y = -1.0 * (y_raw - min(y_raw)) / norm_factor + 1.0
        #Set data and model for fits
        icorr = 0

        G1 = Gauss1D('G1')
        d = Data1D('He 1083', x, y, staterror=sd)

        #guess parameters, this is important or sherpa won't know where to start looking
        G1.fwhm = .05
        G1.pos = 1083.03 + ref_value * 5
        mdl = G1

        mplot = ModelPlot()
        mplot.prepare(d, mdl)
        dplot = DataPlot()
        dplot.prepare(d)
        mplot.overplot()

        #set error methods, ChiSq() or LeastSq()
        #Chi square is a way to compare which profile best describes data, ie: is it more gaussian or lorentzian
        #Least Square says how good the data fits the particular model instance
        #opt - optimizers improve the fit. Monte Carlo is what I used, it is slow but it is most robust. Many options on sherpas site
        ustat = LeastSq()
        opt = MonCar()  #LevMar() #NelderMead() #

        #apply actual Fit
        f = Fit(d, mdl, stat=ustat, method=opt)
        res = f.fit()
        fplot = FitPlot()
示例#5
0
plt.plot(xmid, y2 / (xhi - xlo) / pha.exposure)

plt.xlabel('Energy (keV)')
plt.ylabel('Counts/sec/keV')

savefig('pha_eval_model_to_fit.png')

from sherpa.astro.plot import ModelHistogram
mplot = ModelHistogram()
mplot.prepare(pha, full)
mplot.plot()

savefig('pha_fullmodel_model.png')

from sherpa.fit import Fit
fit = Fit(pha, full)
res = fit.fit()

report('res.format()')

from sherpa.plot import ModelPlot

dplot.prepare(pha)
dplot.plot(xlog=True)

mplot2 = ModelPlot()
mplot2.prepare(pha, full)
mplot2.overplot()

savefig('pha_fullmodel_fit.png')
示例#6
0
文件: example.py 项目: wsf1990/sherpa
dplot.plot()
savefig('data.png')

# Note: can not print(dplot) as there is a problem with the fact
#       the input to the data object is a list, not ndarray
#       Sherpa 4.10.0

from sherpa.models.basic import Polynom1D
mdl = Polynom1D()
report("print(mdl)")

mdl.c2.thaw()

from sherpa.plot import ModelPlot
mplot = ModelPlot()
mplot.prepare(d, mdl)
dplot.plot()
mplot.overplot()
savefig("data_model_initial.png")

from sherpa.stats import LeastSq
from sherpa.optmethods import NelderMead
from sherpa.fit import Fit
f = Fit(d, mdl, stat=LeastSq(), method=NelderMead())
report("print(f)")

res = f.fit()
dump("res.succeeded")

report("res.format()")
report("res")
示例#7
0
def prepare_spectra(group, nH, add_gal, redshift):
    pha = read_pha("core_spectrum.pi")
    pha.set_analysis("energy")
    pha.notice(0.5, 7.0)
    tabs = ~pha.mask
    pha.group_counts(group, tabStops=tabs)
    x = pha.get_x()
    x = pha.apply_filter(x, pha._middle)
    y = pha.get_y(filter=True)
    pha.set_analysis("energy")

    model = xsphabs.abs1 * powlaw1d.srcp1
    print("Fitting the spectrum")

    zFlag = False
    if (nH is not None) and (nH > 0.0):
        if add_gal == 1:
            model = xsphabs.gal * xszphabs.abs1 * powlaw1d.srcp
            gal.nH = nH
            freeze(gal.nH)
            zFlag = True

        else:
            model = xsphabs.abs1 * powlaw1d.srcp1
            abs1.nH = nH
            freeze(abs1.nH)
    else:
        model = xszphabs.abs1 * powlaw1d.srcp1
        zFlag = True

    if zFlag is True and add_gal == 1:
        # print('REDSHIFT',redshift)
        abs1.redshift = redshift
        freeze(abs1.redshift)

    full_model = RSPModelPHA(pha.get_arf(), pha.get_rmf(), pha, pha.exposure * model)

    print(full_model)

    fit = Fit(pha, full_model, method=MonCar(), stat=WStat())
    res = fit.fit()

    print(res.format())
    print(fit.est_errors())

    # calculate the p-value for wstat
    mplot2 = ModelPlot()
    mplot2.prepare(pha, full_model)

    miu = mplot2.y * pha.exposure * 0.0146
    obs = y * pha.exposure * 0.0146

    c, ce, cv = gof_cstat(miu, obs)

    print(f"C0={c},C_e={ce},C_v={cv}")

    zval = (fit.calc_stat() - ce) / np.sqrt(cv)

    if zval > 0:
        pval = special.erfc(zval / np.sqrt(2))
    else:
        pval = special.erf(abs(zval) / np.sqrt(2))

    print(f"p-value for wstat = {pval}")

    set_data(pha)
    set_model(model)
    save_chart_spectrum("core_flux_chart.dat", elow=0.5, ehigh=7.0)
    # save_chart_spectrum("core_flux_chart.rdb",format='text/tsv', elow=0.5, ehigh=7.0)
    save_spectrum_rdb("core_flux_chart.dat")
示例#8
0
def fit(star_name, data, model, silent=False, breakdown=False):
    """A function that will fit a given multi-part model to a given spectrum.



    :param star_name: Name of the target star
    :type star_name: str
    :param data: Spectrum data in the form (wave, flux)
    :type data: tuple
    :param model: An unfit spectrum model
    :type model: object
    :param silent:  If true, no plots will generate, defaults to False
    :type silent: bool

    :return: model that is fit to the data
    :rtype: object


    """

    wave, flux = data

    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    d = Data1D(star_name, wave, flux)

    # ==========================================
    # Initial guesses

    # Dataset 1
    dplot = DataPlot()
    dplot.prepare(d)
    if silent is False:
        dplot.plot()

    mplot = ModelPlot()
    mplot.prepare(d, model)
    if silent is False:
        dplot.plot()
        mplot.overplot()
        plt.show()

    # =========================================
    # Fitting happens here - don't break please
    start = time.time()

    stat = LeastSq()

    opt = LevMar()

    opt.verbose = 0
    opt.ftol = 1e-15
    opt.xtol = 1e-15
    opt.gtol = 1e-15
    opt.epsfcn = 1e-15

    if silent is False:
        print(opt)

    vfit = Fit(d, model, stat=stat, method=opt)

    if silent is False:
        print(vfit)

    vres = vfit.fit()

    if silent is False:
        print()
        print()
        print(vres.format())

    # =========================================
    # Plotting after fit

    # Dataset 1
    if silent is False:
        fplot = FitPlot()
        mplot.prepare(d, model)
        fplot.prepare(dplot, mplot)
        fplot.plot()

        # residual
        plt.title(star_name)
        plt.plot(wave, flux - model(wave))

        # plt.xaxis(fontsize = )
        plt.xlabel("Wavelength (AA)", fontsize=12)
        plt.ylabel("Flux", fontsize=12)
        plt.tick_params(axis="both", labelsize=12)

    if silent is False:
        duration = time.time() - start
        print()
        print("Time taken: " + str(duration))
        print()

    plt.show()

    if breakdown is True:
        params = []

        cont = model[0]

        if silent is False:
            plt.scatter(wave, flux, marker=".", c="black")
            plt.plot(wave, model(wave), c="C1")

        for line in model:
            if line.name[0] != "(":
                if line.name == "Cont_flux":
                    if silent is False:
                        print(line)
                        plt.plot(wave, line(wave), linestyle="--")
                else:
                    params.append(line)
                    if silent is False:
                        print()
                        print(line)
                        plt.plot(wave, line(wave) * cont(wave), linestyle="--")

        plt.show()

        return model, params

    return model
示例#9
0
def multifit(star_name, data_list, model_list, silent=False):
    """A function that will fit 2 models to 2 spectra simultaneously.
        This was created to fit the NaI doublets at ~3300 and ~5890 Angstroms.

    :param star_name: Name of the target star
    :type star_name: str
    :param data_list: List of spectrum data in the form [(wave, flux), (wave, flux),...]
    :type data_list: tuple
    :param model_list:  A list of unfit spectrum models
    :type model_list: list
    :param silent:  If true, no plots will generate, defaults to False
    :type silent: bool

    :return: models that are fit to the data
    :rtype: list

    """

    wave1, flux1 = data_list[0]
    wave2, flux2 = data_list[1]

    model1 = model_list[0]
    model2 = model_list[1]

    name_1 = star_name + " 1"
    name_2 = star_name + " 2"

    d1 = Data1D(name_1, wave1, flux1)
    d2 = Data1D(name_2, wave2, flux2)

    dall = DataSimulFit("combined", (d1, d2))
    mall = SimulFitModel("combined", (model1, model2))

    # # ==========================================
    # # Initial guesses

    # Dataset 1
    dplot1 = DataPlot()
    dplot1.prepare(d1)
    if silent is False:
        dplot1.plot()

    mplot1 = ModelPlot()
    mplot1.prepare(d1, model1)
    if silent is False:
        dplot1.plot()
        mplot1.overplot()
        plt.show()

        # Dataset 2
    dplot2 = DataPlot()
    dplot2.prepare(d2)
    if silent is False:
        dplot2.plot()

    mplot2 = ModelPlot()
    mplot2.prepare(d2, model2)
    if silent is False:
        dplot2.plot()
        mplot2.overplot()
        plt.show()

    # # =========================================
    # # Fitting happens here - don't break please
    stat = LeastSq()

    opt = LevMar()
    opt.verbose = 0
    opt.ftol = 1e-15
    opt.xtol = 1e-15
    opt.gtol = 1e-15
    opt.epsfcn = 1e-15
    print(opt)

    vfit = Fit(dall, mall, stat=stat, method=opt)
    print(vfit)
    vres = vfit.fit()

    print()
    print()
    print("Did the fit succeed? [bool]")
    print(vres.succeeded)
    print()
    print()
    print(vres.format())

    # # =========================================
    # # Plotting after fit
    if silent is False:
        # Dataset 1
        fplot1 = FitPlot()
        mplot1.prepare(d1, model1)
        fplot1.prepare(dplot1, mplot1)
        fplot1.plot()

        # residual
        title = "Data 1"
        plt.title(title)
        plt.plot(wave1, flux1 - model1(wave1))
        plt.show()

        # Dataset 2
        fplot2 = FitPlot()
        mplot2.prepare(d2, model2)
        fplot2.prepare(dplot2, mplot2)
        fplot2.plot()

        # residual
        title = "Data 2"
        plt.title(title)
        plt.plot(wave2, flux2 - model2(wave2))
        plt.show()

        # both datasets - no residuals
        splot = SplitPlot()
        splot.addplot(fplot1)
        splot.addplot(fplot2)

        plt.tight_layout()
        plt.show()

    return model_list
示例#10
0
    def prepare_spectra(nH: float,
                        group: int = 1,
                        add_gal: bool = False,
                        redshift: Optional[float] = None,
                        **kwargs) -> float:
        """
        Fit the spectra using an absorbed powerlaw model using the Wstat statistic. The function also returns a p-value for the gof.
        :param nH: The galactic absorption column density in units of 10^22 /cm3
        :param group: The number of counts per energy bin
        :param add_gal: Setting this to True would add an intrinsic abrosption column density along side the galactic one
        :param redshift: The redshift to use in the fit. Only takes effect if add_gal is set to True
        ...
        :return: Returns the p-value of the gof. The null hypothesis states that the model and the observation differ while alternate says that the model explains the data
        """

        pha = read_pha("core_spectrum.pi")
        pha.set_analysis("energy")
        pha.notice(0.5, 7.0)
        tabs = ~pha.mask
        pha.group_counts(group, tabStops=tabs)
        x = pha.get_x()
        x = pha.apply_filter(x, pha._middle)
        y = pha.get_y(filter=True)
        pha.set_analysis("energy")

        model = xsphabs.abs1 * powlaw1d.srcp1
        print("Fitting the spectrum")

        zFlag = False
        if (nH is not None) and (nH > 0.0):
            if add_gal == 1:
                model = xsphabs.gal * xszphabs.abs1 * powlaw1d.srcp
                gal.nH = nH
                freeze(gal.nH)
                zFlag = True

            else:
                model = xsphabs.abs1 * powlaw1d.srcp1
                abs1.nH = nH
                freeze(abs1.nH)
        else:
            model = xszphabs.abs1 * powlaw1d.srcp1
            zFlag = True

        if zFlag is True and add_gal == 1:
            # print('REDSHIFT',redshift)
            abs1.redshift = redshift
            freeze(abs1.redshift)

        full_model = RSPModelPHA(pha.get_arf(), pha.get_rmf(), pha,
                                 pha.exposure * model)

        print(full_model)

        fit = Fit(pha, full_model, method=MonCar(), stat=WStat())
        res = fit.fit()

        print(res.format())
        print(fit.est_errors())

        # calculate the p-value for wstat
        mplot2 = ModelPlot()
        mplot2.prepare(pha, full_model)

        miu = mplot2.y * pha.exposure * 0.0146
        obs = y * pha.exposure * 0.0146

        c, ce, cv = SpecUtils.estimate_gof_cstat(miu, obs)

        #print(f"C0={c},C_e={ce},C_v={cv}")

        zval = (fit.calc_stat() - ce) / np.sqrt(cv)

        if zval > 0:
            pval = special.erfc(zval / np.sqrt(2))
        else:
            pval = special.erf(abs(zval) / np.sqrt(2))

        print(f"p-value for wstat = {pval}")

        set_data(pha)
        set_model(model)
        save_chart_spectrum("core_flux_chart.dat", elow=0.5, ehigh=7.0)
        # save_chart_spectrum("core_flux_chart.rdb",format='text/tsv', elow=0.5, ehigh=7.0)
        SAOTraceUtils.save_spectrum_rdb("core_flux_chart.dat")

        return pval
示例#11
0
dplot.plot()
savefig('data.png')

# Note: can not print(dplot) as there is a problem with the fact
#       the input to the data object is a list, not ndarray
#       Sherpa 4.10.0

from sherpa.models.basic import Polynom1D
mdl = Polynom1D()
report("print(mdl)")

mdl.c2.thaw()

from sherpa.plot import ModelPlot
mplot = ModelPlot()
mplot.prepare(d, mdl)
dplot.plot()
mplot.overplot()
savefig("data_model_initial.png")

from sherpa.stats import LeastSq
from sherpa.optmethods import NelderMead
from sherpa.fit import Fit
f = Fit(d, mdl, stat=LeastSq(), method=NelderMead())
report("print(f)")

res = f.fit()
dump("res.succeeded")

report("res.format()")
report("res")