def test_predict_wrong_data(): data = np.array([[2, 3, 51], [2, 34, 6], [3, 33, 7], [4, 13, 65], [2, 3, 15]]) mean_recommender = MeanRecommender() with pytest.raises(AssertionError): mean_recommender.predict(data)
def test_set_model_params(): params = 3.4 mean_recommender = MeanRecommender() mean_recommender.set_model_params(params) assert mean_recommender._mu == params
def test_train_wrong_data_labels(): data = np.array([[2, 3, 51], [2, 34, 6], [2, 33, 7], [2, 13, 65], [2, 3, 15]]) labels = np.array([3, 2, 5, 7]) mean_recommender = MeanRecommender() with pytest.raises(AssertionError): mean_recommender.train(data, labels)
def test_performance_wrong_data(): data = np.array([[2, 3, 51], [2, 34, 6], [3, 33, 7], [4, 13, 65], [2, 3, 15]]) labels = np.array([3, 2, 5, 6, 7]) mean_recommender = MeanRecommender() with pytest.raises(AssertionError): mean_recommender.performance(data, labels)
def test_performance_no_data(): data = np.empty((0, 3)) labels = np.empty(0) mean_recommender = MeanRecommender() mean_recommender._mu = 2.3 rmse = mean_recommender.performance(data, labels) assert rmse == 0
def test_evaluate_no_data(): data = np.empty((0, 3)) labels = np.empty(0) mean_recommender = MeanRecommender() mean_recommender._mu = 2.3 rmse = mean_recommender.evaluate(data, labels) assert rmse == 0
def test_performance(): data = np.array([[2, 3, 51], [2, 34, 6], [2, 33, 7], [2, 13, 65], [2, 3, 15]]) labels = np.array([3, 2, 5, 6, 7]) mean_recommender = MeanRecommender() mean_recommender._mu = 2.3 rmse = mean_recommender.performance(data, labels) assert rmse == np.sqrt(np.mean((mean_recommender._mu - labels)**2))
def test_predict(): data = np.array([[2, 3, 51], [2, 34, 6], [2, 33, 7], [2, 13, 65], [2, 3, 15]]) mean_recommender = MeanRecommender() mean_recommender._mu = 2.3 predictions = mean_recommender.predict(data) assert np.array_equal(predictions, np.full(len(data), mean_recommender._mu))
def test_train(): data = np.array([[2, 3, 51], [2, 34, 6], [2, 33, 7], [2, 13, 65], [2, 3, 15]]) labels = np.array([3, 2, 5, 6, 7]) mean_recommender = MeanRecommender() mean_recommender.train(data, labels) assert mean_recommender._clientId == data[0, 0] assert mean_recommender._mu == np.mean(labels)
def test_mean_recommender(): mean_recommender = MeanRecommender() assert mean_recommender._clientId is None
def test_get_model_params(): mean_recommender = MeanRecommender() mean_recommender._mu = 3.5 params = mean_recommender.get_model_params() assert mean_recommender._mu == params