def create_hashed_features_wdk(param, data): """ creates hashed dot features for the wdk """ # fix parameters start_degree = 0 hash_bits = 12 degree = param["degree"] order = 1 gap = 0 reverse = True #print "test", data[0] # create raw features feats_char = StringCharFeatures(data, DNA) feats_raw = StringByteFeatures(DNA) feats_raw.obtain_from_char(feats_char, order - 1, order, gap, reverse) # finish up feats = HashedWDFeaturesTransposed(feats_raw, start_degree, degree, degree, hash_bits) #feats = HashedWDFeatures(feats_raw, start_degree, degree, degree, hash_bits) #feats = WDFeatures(feats_raw, 1, 8)#, degree, hash_bits) return feats
def features_snp_modular(fname): from shogun.Features import StringByteFeatures, SNPFeatures, SNP sf=StringByteFeatures(SNP) sf.load_ascii_file(fname, False, SNP, SNP) #print sf.get_features() snps=SNPFeatures(sf)
def features_snp_modular(fname): from shogun.Features import StringByteFeatures, SNPFeatures, SNP sf = StringByteFeatures(SNP) sf.load_ascii_file(fname, False, SNP, SNP) #print sf.get_features() snps = SNPFeatures(sf)
def create_hashed_features_wdk(data, degree): """ creates hashed dot features for the wdk """ # fix parameters start_degree = 0 hash_bits = 12 order = 1 gap = 0 reverse = True dat = [str(xt) for xt in data] # create raw features feats_char = StringCharFeatures(dat, DNA) feats_raw = StringByteFeatures(DNA) feats_raw.obtain_from_char(feats_char, order - 1, order, gap, reverse) # finish up feats = HashedWDFeaturesTransposed(feats_raw, start_degree, degree, degree, hash_bits) #feats = HashedWDFeatures(feats_raw, start_degree, degree, degree, hash_bits) #feats = WDFeatures(feats_raw, 1, 8)#, degree, hash_bits) return feats
def create_hashed_features_wdk(param, data): """ creates hashed dot features for the wdk """ # fix parameters start_degree = 0 hash_bits = 12 degree = param["degree"] order = 1 gap = 0 reverse = True #print "test", data[0] # create raw features feats_char = StringCharFeatures(data, DNA) feats_raw = StringByteFeatures(DNA) feats_raw.obtain_from_char(feats_char, order-1, order, gap, reverse) # finish up feats = HashedWDFeaturesTransposed(feats_raw, start_degree, degree, degree, hash_bits) #feats = HashedWDFeatures(feats_raw, start_degree, degree, degree, hash_bits) #feats = WDFeatures(feats_raw, 1, 8)#, degree, hash_bits) return feats
def distribution_ppwm_modular (fm_dna=traindna, order=3): from shogun.Features import StringByteFeatures, StringCharFeatures, DNA from shogun.Distribution import PositionalPWM from numpy import array,e,log,exp charfeat=StringCharFeatures(DNA) charfeat.set_features(fm_dna) feats=StringByteFeatures(charfeat.get_alphabet()) feats.obtain_from_char(charfeat, order-1, order, 0, False) L=20 k=3 sigma = 1; mu = 4 ppwm=PositionalPWM() ppwm.set_sigma(sigma) ppwm.set_mean(mu) pwm=array([[0.0, 0.5, 0.1, 1.0], [0.0, 0.5, 0.5, 0.0], [1.0, 0.0, 0.4, 0.0], [0.0, 0.0, 0.0, 0.0]]); pwm=array([[0.01,0.09,0.1],[0.09,0.01,0.1],[0.85,0.4,0.1],[0.05,0.5,0.7]]) ppwm.set_pwm(log(pwm)) #print(ppwm.get_pwm()) ppwm.compute_w(L) w=ppwm.get_w() #print(w) #from pylab import * #figure(1) #pcolor(exp(w)) #pcolor(w) #colorbar() #figure(2) ppwm.compute_scoring(1) u=ppwm.get_scoring(0) #pcolor(exp(u)) #show() #ppwm=PositionalPWM(feats) #ppwm.train() #out_likelihood = histo.get_log_likelihood() #out_sample = histo.get_log_likelihood_sample() return w,u
def features_string_hashed_wd_modular(A=matrix,order=3,start_order=1,hash_bits=2): a=LongIntFeatures(A) from numpy import array, uint8 from shogun.Features import HashedWDFeatures, StringByteFeatures, RAWDNA from shogun.IO import MSG_DEBUG x=[array([0,1,2,3,0,1,2,3,3,2,2,1,1],dtype=uint8)] from_order=order f=StringByteFeatures(RAWDNA) #f.io.set_loglevel(MSG_DEBUG) f.set_features(x) y=HashedWDFeatures(f,start_order,order,from_order,hash_bits) fm=y.get_computed_dot_feature_matrix() return fm
def distribution_ppwm_modular(fm_dna=traindna, order=3): from shogun.Features import StringByteFeatures, StringCharFeatures, DNA from shogun.Distribution import PositionalPWM from numpy import array, e, log, exp charfeat = StringCharFeatures(DNA) charfeat.set_features(fm_dna) feats = StringByteFeatures(charfeat.get_alphabet()) feats.obtain_from_char(charfeat, order - 1, order, 0, False) ppwm = PositionalPWM() ppwm.set_sigma(5.0) ppwm.set_mean(10.0) pwm = array([[0.0, 0.5, 0.1, 1.0], [0.0, 0.5, 0.5, 0.0], [1.0, 0.0, 0.4, 0.0], [0.0, 0.0, 0.0, 0.0]]) ppwm.set_pwm(log(pwm)) print ppwm.get_pwm() ppwm.compute_w(20) w = ppwm.get_w()
def distribution_ppwm_modular (fm_dna=traindna, order=3): from shogun.Features import StringByteFeatures, StringCharFeatures, DNA from shogun.Distribution import PositionalPWM from numpy import array,e,log,exp charfeat=StringCharFeatures(DNA) charfeat.set_features(fm_dna) feats=StringByteFeatures(charfeat.get_alphabet()) feats.obtain_from_char(charfeat, order-1, order, 0, False) ppwm=PositionalPWM() ppwm.set_sigma(5.0) ppwm.set_mean(10.0) pwm=array([[0.0, 0.5, 0.1, 1.0], [0.0, 0.5, 0.5, 0.0], [1.0, 0.0, 0.4, 0.0], [0.0, 0.0, 0.0, 0.0]]); ppwm.set_pwm(log(pwm)) print ppwm.get_pwm() ppwm.compute_w(20) w= ppwm.get_w()