示例#1
0
    def save_map (self, args):

        self.area_shapefile=args["area_shapefile"] 
        self.outline_shapefile=args["outline_shapefile"]


        svg=map2svg (args["width"], args["height"])
        svg.load_shapefile(self.area_shapefile)
        svg.autoscale()
        svgtxt=svg.build_svg(None,args['shape_fieldID'],'regio')
        
        mapdata=self.mapdata       
        outfile=args['outfile']

        if self.outline_shapefile is not None:
           # print 'outline'
            outline_shp=shpUtils.loadShapefile(self.outline_shapefile)

            svgtxt+=svg.build_svg(outline_shp, args['outline_fieldID'],'outline',include_data_regio=False)
#            labelID=args['outline_labelID']

                
        svgtxt=svg.embed_svg(svgtxt)
        f=open (outfile+'.svg','w')
        f.write(svgtxt)
        f.close()        

        regio_ids=svg.get_shapeids(None, args['shape_fieldID'])
        s=json.dumps(regio_ids)
        
        f=open("js/shape_ids.js",'w')
        f.write("var shape_ids=")
        f.write(s)
        f.write(';\n')
        f.close()
示例#2
0
def loadshapefile(filename):
    print 'Loading shapefile %s' % filename
    t1 = time.time()
    shapefile = shpUtils.loadShapefile(filename)
    t2 = time.time()
    print '%0.3f seconds load time' % (t2 - t1)
    return shapefile
示例#3
0
def loadshapefile( filename ):
	print 'Loading shapefile %s' % filename
	t1 = time.time()
	shapefile = shpUtils.loadShapefile( filename )
	t2 = time.time()
	print '%0.3f seconds load time' %( t2 - t1 )
	return shapefile
示例#4
0
	def __init__(self,filename):
		self.filename = filename # the filename and location of the shapefile
		self.records = [] #list of easch poly in the shapefile
		self.minX = 9999
		self.maxX =-9999
		self.minY= 9999
		self.maxY= -9999

		shpRecords = shpUtils.loadShapefile(self.filename) 

		for i in range(0,len(shpRecords)):
			x=[]
			y=[]
			for j in range(0,len(shpRecords[i]['shp_data']['parts'][0]['points'])):
				tempx = float(shpRecords[i]['shp_data']['parts'][0]['points'][j]['x'])
				tempy = float(shpRecords[i]['shp_data']['parts'][0]['points'][j]['y'])
				x.append(tempx)
				y.append(tempy)

			name = shpRecords[i]['dbf_data']['NAME']
			#logging.info("reading name:"+name)
			#name = 'test'
			self.records.append(Poly(x,y,name))

		# Calculates the spatial extents. ideally this information is calculated in the above for loop, but i'm lazy and this is fast.
		for p in self.records:										# for each poly
			tX = min(p.coords[...,0])									# find the min value of X
			tY = min(p.coords[...,1])									# find the min value of Y
			if tX<self.minX: self.minX=tX 								# if the current poly's min x is smaller than recorded minX, set min to current
			if tY<self.minY: self.minY=tY 								# if the current poly's min y is smaller than recorded miny, set min to current
			tX = max(p.coords[...,0])									# find the max value of X
			tY = max(p.coords[...,1])									# find the max value of Y
			if tX>self.maxX: self.maxX=tX 								# if the current poly's max x is smaller than recorded maxX, set min to current
			if tY>self.maxY: self.maxY=tY 
示例#5
0
def load_world():
	shpRecords = shpUtils.loadShapefile('world_borders/world_borders.shp')['features']
	colors = load_color_map()
	plt.figure(figsize=(16, 9))

	last = ''
	for i in range(0,len(shpRecords)):
		if shpRecords[i]['info']['CNTRY_NAME'] != last:
			print shpRecords[i]['info']['CNTRY_NAME']
			last = shpRecords[i]['info']['CNTRY_NAME']

		# x and y are empty lists to be populated with the coords of each geometry.
		x = []
		y = []
		#print shpRecords[i]
		for j in range(0,len(shpRecords[i]['shape']['parts'][0]['points'])):
			tempx = float(shpRecords[i]['shape']['parts'][0]['points'][j][0])
			tempy = float(shpRecords[i]['shape']['parts'][0]['points'][j][1])
			x.append(tempx)
			y.append(tempy) # Populate the lists  

		# Creates a polygon in matplotlib for each geometry in the shapefile
		if shpRecords[i]['info']['CNTRY_NAME'] in colors:
			if shpRecords[i]['info']['CNTRY_NAME'] == 'Congo' or shpRecords[i]['info']['CNTRY_NAME'] == 'Zaire':
				plt.fill(x,y, facecolor=colors['Democratic Republic of the Congo'])
			plt.fill(x,y, facecolor=colors[shpRecords[i]['info']['CNTRY_NAME']])

	plt.axis('equal')
	plt.savefig('world_calls.png', dpi=100, format='png')
	plt.show()
示例#6
0
    def save_map(self, args):

        self.width=800
        self.height=800        
        
        shpRecords=shpUtils.loadShapefile(args["area_shapefile"])
        outlineRecords=shpUtils.loadShapefile(args["outline_shapefile"])
        centroidRecords=shpUtils.loadShapefile(args["centroid_shapefile"])
        area_js=self.build_area_js(shpRecords, args['shape_fieldID'])
        centroid_js=self.build_centroid_js(shpRecords, args['shape_fieldID'])
        labelID=args['shape_labelID']
        outfile=args['outfile']

        
        f=open("js\\area.js","w")
        f.write(area_js)
        f.write("\n")
        #f.write("var total_length=%d;\n" % self.total_length)
        f.write("var minx=%d;\n" % self.minx)
        f.write("var miny=%d;\n" % self.miny)
        f.write("var maxx=%d;\n" % self.maxx)
        f.write("var maxy=%d;\n" % self.maxy)
        f.write("var dx=%d;\n" % self.dx)
        f.write("var dy=%d;\n" % self.dy)
        f.write("var width=%d;\n" % self.width)
        f.write("var height=%d;\n" % self.height)
        
        f.close()

        f=open("js/centroids.js",'w')        
        f.write(centroid_js);
        f.close()

        regio_ids=self.get_shapeids(shpRecords, args['shape_fieldID'])
        for regio,shapes in regio_ids.items():
            regio_ids[regio]=[shape[1:] for shape in shapes]
                

#        f=open("js/regioshapes2.js",'w')        
#        s=json.dumps(regiocoords);
#        f.write("var regioshapes2="+s+';\n');
        #f.close()


        s='{}'    
        if labelID is not None:
            self.write_keyfile('js/regiolabels.js',labels,'regio')
示例#7
0
文件: trees.py 项目: aaronreyna/trees
def read_points(shape_file):
    shpRecords = shpUtils.loadShapefile(shape_file)
    
    points = []
    for record in shpRecords:
        points.append(( record['dbf_data']['POINTID'], record['shp_data'], 
                        record['dbf_data']['GRID_CODE'] ))
    return points
示例#8
0
    def save_map(self, args):

        self.width = 800
        self.height = 800

        shpRecords = shpUtils.loadShapefile(args["area_shapefile"])
        outlineRecords = shpUtils.loadShapefile(args["outline_shapefile"])
        centroidRecords = shpUtils.loadShapefile(args["centroid_shapefile"])
        area_js = self.build_area_js(shpRecords, args['shape_fieldID'])
        centroid_js = self.build_centroid_js(shpRecords, args['shape_fieldID'])
        labelID = args['shape_labelID']
        outfile = args['outfile']

        f = open("js\\area.js", "w")
        f.write(area_js)
        f.write("\n")
        #f.write("var total_length=%d;\n" % self.total_length)
        f.write("var minx=%d;\n" % self.minx)
        f.write("var miny=%d;\n" % self.miny)
        f.write("var maxx=%d;\n" % self.maxx)
        f.write("var maxy=%d;\n" % self.maxy)
        f.write("var dx=%d;\n" % self.dx)
        f.write("var dy=%d;\n" % self.dy)
        f.write("var width=%d;\n" % self.width)
        f.write("var height=%d;\n" % self.height)

        f.close()

        f = open("js/centroids.js", 'w')
        f.write(centroid_js)
        f.close()

        regio_ids = self.get_shapeids(shpRecords, args['shape_fieldID'])
        for regio, shapes in regio_ids.items():
            regio_ids[regio] = [shape[1:] for shape in shapes]


#        f=open("js/regioshapes2.js",'w')
#        s=json.dumps(regiocoords);
#        f.write("var regioshapes2="+s+';\n');
#f.close()

        s = '{}'
        if labelID is not None:
            self.write_keyfile('js/regiolabels.js', labels, 'regio')
示例#9
0
def demoBetterDirectLoadSHAPE():
    import shpUtils
    ss=shpUtils.loadShapefile('/home/cpbl/rdc/inputData/healthRegions/shp/HR000b07_PZ.shp')
    return(ss['features'])
    # now do whatever you want with the resulting data
    # i'm going to just print out the first feature in this shapefile
    print shpRecords[0]['dbf_data']
    for part in shpRecords[0]['shp_data']:
        print part, shpRecords[0]['shp_data'][part]
	def __init__(self):
		self.db = database.DBConnection()
		colors = self.get_color_map()		

		# Dict mapping country names to polygon coords
		self.nations = {}

		# Matplotlib canvases to draw on
		self.figure = plt.figure(figsize=(16,9))
		self.root = Tk.Tk()
		self.root.title('Int\'l Calls to Rwanda')
		self.canvas = FigureCanvasTkAgg(self.figure, master=self.root)
		self.base = self.figure.add_subplot(111)

		# Load countries from shape file into dictionary with self.nations
		xmax, xmin, ymax, ymin = 0, 0, 0, 0
		shpRecords = shpUtils.loadShapefile('world_borders/world_borders.shp')['features']
		for i in range(0,len(shpRecords)):
			# 'verts' is populated with tuples of each border point
			verts = []
			for j in range(0,len(shpRecords[i]['shape']['parts'][0]['points'])):
				tempx = float(shpRecords[i]['shape']['parts'][0]['points'][j][0])
				tempy = float(shpRecords[i]['shape']['parts'][0]['points'][j][1])
				verts.append((tempx, tempy))
				if tempx > xmax: xmax = tempx
				if tempx < xmin: xmin = tempx
				if tempy > ymax: ymax = tempy
				if tempy < ymin: ymin = tempy
 
			cntry_name = shpRecords[i]['info']['CNTRY_NAME']
			if cntry_name in colors:
				if cntry_name.find('Congo') >= 0 or cntry_name.find('Zaire') >= 0:
					if cntry_name in self.nations:
						self.nations[cntry_name].append(PolyCollection([verts], facecolor=colors['Democratic Republic of the Congo']))
					else:
						self.nations[cntry_name] = [PolyCollection([verts], facecolor=colors['Democratic Republic of the Congo'],edgecolor='black')] 
				else:
					if cntry_name in self.nations:
						self.nations[cntry_name].append(PolyCollection([verts], facecolor=colors[shpRecords[i]['info']['CNTRY_NAME']],edgecolor='black'))
					else:
						self.nations[cntry_name] = [PolyCollection([verts], facecolor=colors[shpRecords[i]['info']['CNTRY_NAME']],edgecolor='black')]

		# Add countries loaded into self.nations to the canvas
		for cntry, polys in self.nations.items():
			# Each country can have multiple polygons representing it
			for p in polys:
				if p != []:
					self.base.add_collection(p)
		plt.xlim(xmin, xmax)
		plt.ylim(ymin+20, ymax+20)

		self.canvas.show()
		self.figure.savefig('world', dpi=100, format='png')
示例#11
0
文件: boxes.py 项目: mshron/gistof.us
def shape_to_dict(shapefile):
    name = lambda d: d['STATE']+d['COUNTY']+('%-6s'%d['TRACT']).replace(' ','0')
    shp = shpUtils.loadShapefile(shapefile)
    out = {}
    for sh in shp:
        n = name(sh['dbf_data'])
        parts = []
        for shlist in sh['shp_data']['parts']:
            points = []
            for pt in shlist['points']:
                points.append((pt['x'],pt['y']))
            parts.append(np.asarray(points))
        out[n] = parts
    return out
def getInfoFromShp(shpFile):
    """Read polygon from shp file and place in tuple.

		polyInfo = dictionary of polygon info (polygons are list of (x,y) pairs)
		shpFile = shp file to read from
		requires import of shpUtils module.
	"""

    import shpUtils

    polyInfo = {}

    shpRecs = shpUtils.loadShapefile(shpFile)
    numRecords = len(shpRecs)
    for irec in range(numRecords):
        polyInfo[irec] = {}
        polyInfo[irec]['POINTS'] = []
        numVertices = len(shpRecs[irec]['shp_data']['parts'][0]['points'])
        for ivert in range(numVertices):
            lon = shpRecs[irec]['shp_data']['parts'][0]['points'][ivert]['x']
            lat = shpRecs[irec]['shp_data']['parts'][0]['points'][ivert]['y']
            polyInfo[irec]['POINTS'].append((lon, lat))
    return polyInfo
示例#13
0
			m[zipcode] = occurencyNumb
	return m

#Declare inputs
zipcodefile = "chicago.csv"
shapefile = "ZipCodes.shp"
#define colours
colours = {0:"#F7FCF0", 1:"#E0F3DB", 2:"#CCEBC5", 3:"#A8DDB5", 4:"#7BCCC4", 5:"#4EB3D3", 6:"#2B8CBE", 7:"#0868AC", 8:"#084081"}
colours = {0:"#ffffff", 1:"#fcfcff", 2:"#ebecff", 3:"#ebecff", 4:"#dadcff", 5:"#c9ccff", 6:"#b8bcff", 7:"#a7acff", 8:"#969cff", 9:"#858cff", 10:"#747cff", 11:"#636cff", 12:"#525dff", 13:"#414dff", 14:"#303dff", 15:"#1f2dff", 16:"#0e1dff", 17:"#0010fc", 18:"#000feb", 19:"#000eda", 20:"#000dc9", 21:"#000bb8", 22:"#000aa7"}
colours = {0:"#ffffff", 1:"#ebecff", 2:"#dadcff", 3:"#a7acff", 4:"#a7acff", 5:"#414dff", 6:"#0e1dff", 7:"#000eda", 8:"#000aa7"}
#colours = {0:"#F7FCF0", 1:"#F7FCF0", 2:"#E0F3DB", 3:"#E0F3DB", 4:"#CCEBC5", 5:"#CCEBC5", 6:"#A8DDB5", 7:"#7BCCC4", 8:"#4EB3D3", 9:"#2B8CBE", 10:"#0868AC", 11:"#084081"}
#colours = {0:"", 1:"", 2:"", 3:"", 4:"", 5:"", 6:"", 7:"", 8:""}
#colours = {0:"#FFF7EC", 1:"#FEE8C8", 2:"#FDD49E", 3:"#FDBB84", 4:"#FC8D59", 5:"#EF6548", 6:"#D7301F", 7:"#B30000", 8:"#7F0000"}

# load the shapefile
shpRecords = shpUtils.loadShapefile(shapefile)
# load zipcodefile
m = loadZipcode(zipcodefile)
max = 0
for i in range(0,len(shpRecords)):
	zipcode =  shpRecords[i]["dbf_data"]["ZIP"]
	if m[zipcode] > max:
		max = m[zipcode]
unit = max/8
print max

for i in range(0,len(shpRecords)):
	# x and y are empty lists to be populated with the coordinates of each geometry.
	x = []
	y = []
	for j in range(0,len(shpRecords[i]['shp_data']['parts'][0]['points'])):
示例#14
0
def collate_zones(shape_file):
    # First collate the polygons by zone name
    print "Loading SHP file..."
    rows = shpUtils.loadShapefile(shape_file)
    collated = {}
    for row in rows:
        name = row["dbf_data"]["TZID"].strip()
        if name == "uninhabited":
            continue

        sys.stderr.write("Processing row for '%s'\n" % name)
        collated[name] = collated.get(name, [])
        for p in row["shp_data"]["parts"]:
            collated[name].append({
                "points": p["points"],
            })

    # Then add some information and try to simplify/reduce the polygons
    zones = {}
    collation_now = time.time()
    for name, shp_data in collated.iteritems():
        sys.stderr.write("Simpifying %s\n" % name)
        transition_info = []
        tz = pytz.timezone(name)
        if "_utc_transition_times" in dir(tz):
            last_info = [sys.maxint, 0, '']
            for i, transition_time in enumerate(tz._utc_transition_times):
                transition_time = int(time.mktime(transition_time.timetuple()))
                td = tz._transition_info[i][0]
                info = [
                    transition_time,
                    timedelta_to_minutes(td),
                    tz._transition_info[i][2]
                ]

                if transition_time < collation_now:
                    last_info = info
                    continue

                # Include the last timezone prior to now
                if last_info[0] < collation_now:
                    transition_info.append(last_info)

                transition_info.append(info)
                last_info = info

        if len(transition_info) == 0:
            # Assume no daylight savings
            now = datetime.datetime.now()
            td = tz.utcoffset(now)
            transition_info.append([0, timedelta_to_minutes(td),
                                     tz.tzname(now)])


        # calculate a collation key based on future timezone transitions
        collation_key = ''
        for t in transition_info:
            if t[0] >= collation_now:
                collation_key += "%d>%d," % (t[0], t[1])

        # for non-daylight savings regions, just use the utc_offset
        if len(collation_key) == 0:
            collation_key = "0>%d" % transition_info[-1][1]

        zones[collation_key] = zones.get(collation_key, {
            "bounding_box": {
                "xmin": sys.maxint,
                "ymin": sys.maxint,
                "xmax":-sys.maxint - 1,
                "ymax":-sys.maxint - 1
            },
            "polygons": [],
            "transitions": {},
            "name": name
        })

        zones[collation_key]["transitions"][name] = transition_info

        polygons = reduce_polygons(shp_data, 0.1, 0.01, 4, 5000, 0, 0.05)

        for part in polygons:
            polygonInfo = simplify(part["points"])
            polygonInfo["name"] = name
            zones[collation_key]["polygons"].append(polygonInfo)

            b = zones[collation_key]["bounding_box"]
            b["xmin"] = min(b["xmin"], polygonInfo["bounds"][0])
            b["ymin"] = min(b["ymin"], polygonInfo["bounds"][1])
            b["xmax"] = max(b["xmax"], polygonInfo["bounds"][2])
            b["ymax"] = max(b["ymax"], polygonInfo["bounds"][3])
            del polygonInfo["bounds"]

    return zones
示例#15
0
#!/usr/bin/env python

# readshape.py - test
import sys
import time
import shpUtils

t1 = time.time()

# load the shapefile, populating a list of dictionaries
#features = shpUtils.loadShapefile( 'states/st99_d00_shp/st99_d00.shp')
shapefile = shpUtils.loadShapefile('states/st99_d00_shp-90/st99_d00.shp')
features = shapefile['features']

t2 = time.time()

print '%0.3f seconds load time' % (t2 - t1)

print '%d features' % len(features)

#for feature in features:
for i in xrange(len(features)):
    feature = features[i]
    info = feature['info']
    shape = feature['shape']
    type = shape['type']
    if type == 0:
        pass
    elif type == 5:
        parts = shape['parts']
        if len(parts) > 1:
示例#16
0
 def load_shapefile(self, infile):
     self.shaperecords = shpUtils.loadShapefile(infile)
     return self.shaperecords
示例#17
0
def collate_zones(shape_file):
    # First collate the polygons by zone name
    print "Loading SHP file..."
    rows = shpUtils.loadShapefile(shape_file)
    collated = {}
    for row in rows:
        name = row["dbf_data"]["TZID"].strip()
        if name == "uninhabited":
            continue

        sys.stderr.write("Processing row for '%s'\n" % name)
        collated[name] = collated.get(name, [])
        for p in row["shp_data"]["parts"]:
            collated[name].append({
                "points": p["points"],
            })

    # Then add some information and try to simplify/reduce the polygons
    zones = {}
    collation_now = time.time()
    for name, shp_data in collated.iteritems():
        sys.stderr.write("Simpifying %s\n" % name)
        transition_info = []
        tz = pytz.timezone(name)
        if "_utc_transition_times" in dir(tz):
            last_info = [sys.maxint, 0, '']
            for i, transition_time in enumerate(tz._utc_transition_times):
                transition_time = int(time.mktime(transition_time.timetuple()))
                td = tz._transition_info[i][0]
                info = [
                    transition_time,
                    timedelta_to_minutes(td), tz._transition_info[i][2]
                ]

                if transition_time < collation_now:
                    last_info = info
                    continue

                # Include the last timezone prior to now
                if last_info[0] < collation_now:
                    transition_info.append(last_info)

                transition_info.append(info)
                last_info = info

        if len(transition_info) == 0:
            # Assume no daylight savings
            now = datetime.datetime.now()
            td = tz.utcoffset(now)
            transition_info.append(
                [0, timedelta_to_minutes(td),
                 tz.tzname(now)])

        # calculate a collation key based on future timezone transitions
        collation_key = ''
        for t in transition_info:
            if t[0] >= collation_now:
                collation_key += "%d>%d," % (t[0], t[1])

        # for non-daylight savings regions, just use the utc_offset
        if len(collation_key) == 0:
            collation_key = "0>%d" % transition_info[-1][1]

        zones[collation_key] = zones.get(
            collation_key, {
                "bounding_box": {
                    "xmin": sys.maxint,
                    "ymin": sys.maxint,
                    "xmax": -sys.maxint - 1,
                    "ymax": -sys.maxint - 1
                },
                "polygons": [],
                "transitions": {},
                "name": name
            })

        zones[collation_key]["transitions"][name] = transition_info

        polygons = reduce_polygons(shp_data, 0.1, 0.01, 4, 5000, 0, 0.05)

        for part in polygons:
            polygonInfo = simplify(part["points"])
            polygonInfo["name"] = name
            zones[collation_key]["polygons"].append(polygonInfo)

            b = zones[collation_key]["bounding_box"]
            b["xmin"] = min(b["xmin"], polygonInfo["bounds"][0])
            b["ymin"] = min(b["ymin"], polygonInfo["bounds"][1])
            b["xmax"] = max(b["xmax"], polygonInfo["bounds"][2])
            b["ymax"] = max(b["ymax"], polygonInfo["bounds"][3])
            del polygonInfo["bounds"]

    return zones
    fnDbf = os.path.basename(dbf.filename)
    open("upload/" + fnDbf, "wb").write(dbf.file.read())
    message = "2"

    # this needs to be generalized
    connection = Connection()
    db = connection.opendata
    my_collection = db[coll]
    my_collection.ensure_index([("location", GEO2D)])
    att_collection = db.attributes

    try:
        attributes = set()

        # load the shapefile
        shpRecords = shpUtils.loadShapefile("upload/" + fnShp)

        # add all the records in the shapefile to the new collection
        for record in shpRecords:
            if "x" in record["location"]:
                point = (record["location"]["x"], record["location"]["y"])
            elif "xmax" in record["location"]:
                xmax = record["location"]["xmax"]
                xmin = record["location"]["xmin"]
                ymax = record["location"]["ymax"]
                ymin = record["location"]["ymin"]
                x = xmin + ((xmax - xmin) / 2)
                y = ymin + ((ymax - ymin) / 2)
                point = (x, y)
            else:
                continue
示例#19
0
    #
    
    t = tarfile.open(shpfile)    
    t.extractall()

    shp = shpfile.replace(".tar.gz", "")
    shp = "%s/%s.shp" % (shp, shp)

    #
    
    polys = []

    print shp
    
    for record in shpUtils.loadShapefile(shp) :

        print record
        continue
    
        for part in record['shp_data']['parts'] :

            poly = []
            
            for pt in part['points'] :
                if pt.has_key('x') and pt.has_key('y') :
                    poly.append((pt['x'], pt['y']))

            poly = tuple(poly)
            p = Polygon(poly)
示例#20
0
#!/usr/bin/env python

# Analyze the WWF Terrestrial Ecoregions of the World shape files,
# http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
# Dependencies: shpUtils.py and dbfUtils.py, both from
# http://indiemaps.com/blog/2008/03/easy-shapefile-loading-in-python/

import shpUtils

shpRecords = shpUtils.loadShapefile("wwf_terr_ecos.shp")
print "Loaded the shape file"

# The list of biomes defined in wwf_terr_ecos.htm :
biomes = [
    "BIOME 0",  # should never occur
    "Tropical & Subtropical Moist Broadleaf Forests",
    "Tropical & Subtropical Dry Broadleaf Forests",
    "Tropical & Subtropical Coniferous Forests",
    "Temperate Broadleaf & Mixed Forests",
    "Temperate Conifer Forests",
    "Boreal Forests/Taiga",
    "Tropical & Subtropical Grasslands, Savannas & Shrublands",
    "Temperate Grasslands, Savannas & Shrublands",
    "Flooded Grasslands & Savannas",
    "Montane Grasslands & Shrublands",
    "Tundra",
    "Mediterranean Forests, Woodlands & Scrub",
    "Deserts & Xeric Shrublands",
    "Mangroves",
    # WWF, at least, uses 99 for unknown biome.
]
示例#21
0
    0: "#ffffff",
    1: "#ebecff",
    2: "#dadcff",
    3: "#a7acff",
    4: "#a7acff",
    5: "#414dff",
    6: "#0e1dff",
    7: "#000eda",
    8: "#000aa7"
}
#colours = {0:"#F7FCF0", 1:"#F7FCF0", 2:"#E0F3DB", 3:"#E0F3DB", 4:"#CCEBC5", 5:"#CCEBC5", 6:"#A8DDB5", 7:"#7BCCC4", 8:"#4EB3D3", 9:"#2B8CBE", 10:"#0868AC", 11:"#084081"}
#colours = {0:"", 1:"", 2:"", 3:"", 4:"", 5:"", 6:"", 7:"", 8:""}
#colours = {0:"#FFF7EC", 1:"#FEE8C8", 2:"#FDD49E", 3:"#FDBB84", 4:"#FC8D59", 5:"#EF6548", 6:"#D7301F", 7:"#B30000", 8:"#7F0000"}

# load the shapefile
shpRecords = shpUtils.loadShapefile(shapefile)
# load zipcodefile
m = loadZipcode(zipcodefile)
max = 0
for i in range(0, len(shpRecords)):
    zipcode = shpRecords[i]["dbf_data"]["ZIP"]
    if m[zipcode] > max:
        max = m[zipcode]
unit = max / 8
print max

for i in range(0, len(shpRecords)):
    # x and y are empty lists to be populated with the coordinates of each geometry.
    x = []
    y = []
    for j in range(0, len(shpRecords[i]['shp_data']['parts'][0]['points'])):
import shpUtils
import re
shpRecords = shpUtils.loadShapefile('santiago/cl_13comunas_geo.shp')

all_coords = []

for i in range(0, len(shpRecords)):
    coords = []
    name = re.sub("[^\w\s]", "",
                  shpRecords[i]['dbf_data']["NOMBRE"].lower().strip())
    if name in ("san jose de maipo", "lo barnechea", "curacavi", "melipilla",
                "maria pinto", "pirque", "buin", "el monte", "talagante",
                "lampa", "colina", "peaflor"):
        print(name)
    else:
        print(name)
        for j in range(0,
                       len(shpRecords[i]['shp_data']['parts'][0]['points'])):
            tempx = float(
                shpRecords[i]['shp_data']['parts'][0]['points'][j]['x'])
            tempy = float(
                shpRecords[i]['shp_data']['parts'][0]['points'][j]['y'])
            coords.append((tempx, tempy))

        coords = ["[%s, %s]" % row for row in coords]
        coords = ',\n  '.join(coords)
        all_coords.append("{'name':'" + name + "','coords':[" + coords + "]}")

all_coords = ',\n'.join(all_coords)

示例#23
0
import shpUtils
import re
shpRecords = shpUtils.loadShapefile('santiago/cl_13comunas_geo.shp')

all_coords = []

for i in range(0, len(shpRecords)):
    coords = []
    name = re.sub("[^\w\s]", "",
                  shpRecords[i]['dbf_data']["NOMBRE"].lower().strip())
    if name in ("san jose de maipo", "lo barnechea", "curacavi", "melipilla",
                "maria pinto", "pirque", "buin", "el monte", "talagante",
                "lampa", "colina", "peaflor"):
        print(name)
    else:
        print(name)
        for j in range(0,
                       len(shpRecords[i]['shp_data']['parts'][0]['points'])):
            tempx = float(
                shpRecords[i]['shp_data']['parts'][0]['points'][j]['x'])
            tempy = float(
                shpRecords[i]['shp_data']['parts'][0]['points'][j]['y'])
            coords.append((tempx, tempy))

        coords = ["[%s, %s]" % row for row in coords]
        coords = ',\n  '.join(coords)
        all_coords.append("{'name':'" + name + "','coords':[" + coords + "]}")

all_coords = ',\n'.join(all_coords)

santiago = open("santiago.js", "w")
示例#24
0
#!/usr/bin/env python

# Analyze the WWF Terrestrial Ecoregions of the World shape files,
# http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
# Dependencies: shpUtils.py and dbfUtils.py, both from
# http://indiemaps.com/blog/2008/03/easy-shapefile-loading-in-python/

import shpUtils

shpRecords = shpUtils.loadShapefile('wwf_terr_ecos.shp')
print "Loaded the shape file"

# The list of biomes defined in wwf_terr_ecos.htm :
biomes = [
    "BIOME 0",  # should never occur
    "Tropical & Subtropical Moist Broadleaf Forests",
    "Tropical & Subtropical Dry Broadleaf Forests",
    "Tropical & Subtropical Coniferous Forests",
    "Temperate Broadleaf & Mixed Forests",
    "Temperate Conifer Forests",
    "Boreal Forests/Taiga",
    "Tropical & Subtropical Grasslands, Savannas & Shrublands",
    "Temperate Grasslands, Savannas & Shrublands",
    "Flooded Grasslands & Savannas",
    "Montane Grasslands & Shrublands",
    "Tundra",
    "Mediterranean Forests, Woodlands & Scrub",
    "Deserts & Xeric Shrublands",
    "Mangroves",
    # WWF, at least, uses 99 for unknown biome.
]
示例#25
0
 def load_shapefile(self,infile):
     self.shaperecords=shpUtils.loadShapefile(infile)
     return self.shaperecords
示例#26
0
文件: shp2geojson.py 项目: bixente/d3
#original script from Vadim Ogievetsky modified by Vincent Hiribarren

# load the shapefile, populating a list of dictionaries
import shpUtils


shpRecords = shpUtils.loadShapefile('your_file.shp')

# now do whatever you want with the resulting data
# i'm going to just print out the first feature in this shapefile
#print '[[[', shpRecords[3] , ']]]'

print '{"type":"FeatureCollection","features":['

for record in shpRecords:
   dbf = record['dbf_data']
   shp = record['shp_data']
   name = dbf['NAME'].strip().replace("'","\\'")
   code = dbf['ID'] # or FIPS or ISO3 or UN 
   borders = []
   for part in shp.get('parts', []):
       border = []
       for point in part['points']:
           border.append('[%.6f, %.6f]' % (point['x'], point['y']))
           
       border = ','.join(border) 
       borders.append('[' + border + ']')
       
   borders = '[' + ','.join(borders) + ']'
   
   str = '{"type":"Feature","properties":{"name":"%s","code":"%s"},"geometry":{"type":"MultiPolygon","coordinates":[%s]}},' % (name, code, borders)
示例#27
0
#!/usr/bin/env python

# readshape.py - test
import sys
import time
import shpUtils

t1 = time.time()

# load the shapefile, populating a list of dictionaries
#features = shpUtils.loadShapefile( 'states/st99_d00_shp/st99_d00.shp')
shapefile = shpUtils.loadShapefile( 'states/st99_d00_shp-90/st99_d00.shp')
features = shapefile['features']

t2 = time.time()

print '%0.3f seconds load time' %( t2 - t1 )

print '%d features' % len(features)

#for feature in features:
for i in xrange(len(features)):
	feature = features[i]
	info = feature['info']
	shape = feature['shape']
	type = shape['type']
	if type == 0:
		pass
	elif type == 5:
		parts = shape['parts']
		if len(parts) > 1: