def extract_ivectors_single(self, ubm, stat_server, uncertainty=False):
        """
        Estimate i-vectors for a given StatServer using single process on a single node.

        :param stat_server: sufficient statistics stored in a StatServer
        :param ubm: Mixture object (the UBM)
        :param uncertainty: boolean, if True, return an additional matrix with uncertainty matrices (diagonal of the matrices)

        :return: a StatServer with i-vectors in the stat1 attribute and a matrix of uncertainty matrices (optional)
        """
        assert(isinstance(stat_server, StatServer) and stat_server.validate()), \
            "First argument must be a proper StatServer"
        assert (isinstance(ubm, Mixture)
                and ubm.validate()), "Second argument must be a proper Mixture"

        gmm_covariance = "diag" if ubm.invcov.ndim == 2 else "full"

        # Set useful variables
        tv_rank = self.F.shape[1]
        feature_size = ubm.mu.shape[1]
        nb_distrib = ubm.w.shape[0]

        # Whiten the statistics for diagonal or full models
        if gmm_covariance == "diag":
            stat_server.whiten_stat1(ubm.get_mean_super_vector(),
                                     1. / ubm.get_invcov_super_vector())
        elif gmm_covariance == "full":
            stat_server.whiten_stat1(ubm.get_mean_super_vector(), ubm.invchol)

        # Extract i-vectors
        iv_stat_server = StatServer()
        iv_stat_server.modelset = copy.deepcopy(stat_server.modelset)
        iv_stat_server.segset = copy.deepcopy(stat_server.segset)
        iv_stat_server.start = copy.deepcopy(stat_server.start)
        iv_stat_server.stop = copy.deepcopy(stat_server.stop)
        iv_stat_server.stat0 = numpy.ones((stat_server.modelset.shape[0], 1))
        iv_stat_server.stat1 = numpy.ones(
            (stat_server.modelset.shape[0], tv_rank))

        iv_sigma = numpy.ones((stat_server.modelset.shape[0], tv_rank))

        # Replicate self.stat0
        index_map = numpy.repeat(numpy.arange(nb_distrib), feature_size)

        for sess in tqdm(range(stat_server.segset.shape[0]),
                         desc="Processing"):

            inv_lambda = scipy.linalg.inv(
                numpy.eye(tv_rank) +
                (self.F.T * stat_server.stat0[sess, index_map]).dot(self.F))
            Aux = self.F.T.dot(stat_server.stat1[sess, :])
            iv_stat_server.stat1[sess, :] = Aux.dot(inv_lambda)
            iv_sigma[sess, :] = numpy.diag(inv_lambda + numpy.outer(
                iv_stat_server.stat1[sess, :], iv_stat_server.stat1[sess, :]))

        if uncertainty:
            return iv_stat_server, iv_sigma
        else:
            return iv_stat_server
示例#2
0
def _gaussian_backend_train(data, label):
    """
    Take a StatServer of training examples as input
    output a StatServer mean for each class and a tied co-variance matrix
    """
    train_ss = StatServer()
    train_ss.segset = label
    train_ss.modelset = label
    train_ss.stat1 = data
    train_ss.stat0 = numpy.ones((data.shape[0], 1))
    train_ss.start = numpy.empty(data.shape[0], dtype="object")
    train_ss.stop = numpy.empty(data.shape[0], dtype="object")

    return gaussian_backend_train(train_ss)
    def extract_ivectors(self,
                         ubm,
                         stat_server_filename,
                         prefix='',
                         batch_size=300,
                         uncertainty=False,
                         num_thread=1):
        """
        Parallel extraction of i-vectors using multiprocessing module

        :param ubm: Mixture object (the UBM)
        :param stat_server_filename: name of the file from which the input StatServer is read
        :param prefix: prefix used to store the StatServer in its file
        :param batch_size: number of sessions to process in a batch
        :param uncertainty: a boolean, if True, return the diagonal of the uncertainty matrices
        :param num_thread: number of process to run in parallel
        :return: a StatServer with i-vectors in the stat1 attribute and a matrix of uncertainty matrices (optional)
        """
        assert (isinstance(ubm, Mixture)
                and ubm.validate()), "Second argument must be a proper Mixture"

        tv_rank = self.F.shape[1]

        # Set useful variables
        with h5py.File(stat_server_filename,
                       'r') as fh:  # open the first statserver to get size
            _, sv_size = fh[prefix + 'stat1'].shape
            nb_sessions = fh[prefix + "modelset"].shape[0]

            iv_server = StatServer()
            iv_server.modelset = fh.get(prefix + 'modelset').value
            iv_server.segset = fh.get(prefix + 'segset').value

            tmpstart = fh.get(prefix + "start").value
            tmpstop = fh.get(prefix + "stop").value
            iv_server.start = numpy.empty(fh[prefix + "start"].shape, '|O')
            iv_server.stop = numpy.empty(fh[prefix + "stop"].shape, '|O')
            iv_server.start[tmpstart != -1] = tmpstart[tmpstart != -1]
            iv_server.stop[tmpstop != -1] = tmpstop[tmpstop != -1]

            iv_server.stat0 = numpy.ones((nb_sessions, 1), dtype=STAT_TYPE)
            with warnings.catch_warnings():
                iv_server.stat1 = serialize(numpy.zeros(
                    (nb_sessions, tv_rank)))
                iv_sigma = serialize(numpy.zeros((nb_sessions, tv_rank)))

            nb_sessions = iv_server.modelset.shape[0]
            batch_nb = int(numpy.floor(nb_sessions / float(batch_size) +
                                       0.999))
            batch_indices = numpy.array_split(numpy.arange(nb_sessions),
                                              batch_nb)

            manager = multiprocessing.Manager()
            q = manager.Queue()
            pool = multiprocessing.Pool(num_thread + 2)

            # put listener to work first
            watcher = pool.apply_async(iv_collect,
                                       ((iv_server.stat1, iv_sigma), q))
            # fire off workers
            jobs = []

            # Load data per batch to reduce the memory footprint
            for batch_idx in batch_indices:

                # Create list of argument for a process
                arg = batch_idx, fh["stat0"][batch_idx, :], fh["stat1"][
                    batch_idx, :], ubm, self.F
                job = pool.apply_async(iv_extract_on_batch, (arg, q))
                jobs.append(job)

            # collect results from the workers through the pool result queue
            for job in jobs:
                job.get()

            # now we are done, kill the listener
            q.put((None, None, None))
            pool.close()

            iv_server.stat1, iv_sigma = watcher.get()
        if uncertainty:
            return iv_server, iv_sigma
        else:
            return iv_server
示例#4
0
def extract_ivector(tv,
                    stat_server_file_name,
                    ubm,
                    output_file_name,
                    uncertainty=False,
                    prefix=''):
    """
    Estimate i-vectors for a given StatServer using multiple process on multiple nodes.

    :param comm: MPI.comm object defining the group of nodes to use
    :param stat_server_file_name: file name of the sufficient statistics StatServer HDF5 file
    :param ubm: Mixture object (the UBM)
    :param output_file_name: name of the file to save the i-vectors StatServer in HDF5 format
    :param uncertainty: boolean, if True, saves a matrix with uncertainty matrices (diagonal of the matrices)
    :param prefix: prefixe of the dataset to read from in HDF5 file
    """
    assert (isinstance(ubm, Mixture)
            and ubm.validate()), "Second argument must be a proper Mixture"

    comm = MPI.COMM_WORLD

    comm.Barrier()

    gmm_covariance = "diag" if ubm.invcov.ndim == 2 else "full"

    # Set useful variables
    tv_rank = tv.F.shape[1]
    feature_size = ubm.mu.shape[1]
    nb_distrib = ubm.w.shape[0]

    # Get the number of sessions to process
    with h5py.File(stat_server_file_name, 'r') as fh:
        nb_sessions = fh["segset"].shape[0]

    # Work on each node with different data
    indices = numpy.array_split(numpy.arange(nb_sessions), comm.size, axis=0)
    sendcounts = numpy.array([idx.shape[0] * tv.F.shape[1] for idx in indices])
    displacements = numpy.hstack((0, numpy.cumsum(sendcounts)[:-1]))

    stat_server = StatServer.read_subset(stat_server_file_name,
                                         indices[comm.rank])

    # Whiten the statistics for diagonal or full models
    if gmm_covariance == "diag":
        stat_server.whiten_stat1(ubm.get_mean_super_vector(),
                                 1. / ubm.get_invcov_super_vector())
    elif gmm_covariance == "full":
        stat_server.whiten_stat1(ubm.get_mean_super_vector(), ubm.invchol)

    # Estimate i-vectors
    if comm.rank == 0:
        iv = numpy.zeros((nb_sessions, tv_rank))
        iv_sigma = numpy.zeros((nb_sessions, tv_rank))
    else:
        iv = None
        iv_sigma = None

    local_iv = numpy.zeros((stat_server.modelset.shape[0], tv_rank))
    local_iv_sigma = numpy.ones((stat_server.modelset.shape[0], tv_rank))

    # Replicate stat0
    index_map = numpy.repeat(numpy.arange(nb_distrib), feature_size)
    for sess in range(stat_server.segset.shape[0]):

        inv_lambda = scipy.linalg.inv(
            numpy.eye(tv_rank) +
            (tv.F.T * stat_server.stat0[sess, index_map]).dot(tv.F))

        Aux = tv.F.T.dot(stat_server.stat1[sess, :])
        local_iv[sess, :] = Aux.dot(inv_lambda)
        local_iv_sigma[sess, :] = numpy.diag(
            inv_lambda + numpy.outer(local_iv[sess, :], local_iv[sess, :]))
    comm.Barrier()

    comm.Gatherv(local_iv, [iv, sendcounts, displacements, MPI.DOUBLE], root=0)
    comm.Gatherv(local_iv_sigma,
                 [iv_sigma, sendcounts, displacements, MPI.DOUBLE],
                 root=0)

    if comm.rank == 0:

        with h5py.File(stat_server_file_name, 'r') as fh:
            iv_stat_server = StatServer()
            iv_stat_server.modelset = fh.get(prefix + "modelset").value
            iv_stat_server.segset = fh.get(prefix + "segset").value

            # if running python 3, need a conversion to unicode
            if sys.version_info[0] == 3:
                iv_stat_server.modelset = iv_stat_server.modelset.astype(
                    'U', copy=False)
                iv_stat_server.segset = iv_stat_server.segset.astype(
                    'U', copy=False)

            tmpstart = fh.get(prefix + "start").value
            tmpstop = fh.get(prefix + "stop").value
            iv_stat_server.start = numpy.empty(fh[prefix + "start"].shape,
                                               '|O')
            iv_stat_server.stop = numpy.empty(fh[prefix + "stop"].shape, '|O')
            iv_stat_server.start[tmpstart != -1] = tmpstart[tmpstart != -1]
            iv_stat_server.stop[tmpstop != -1] = tmpstop[tmpstop != -1]
            iv_stat_server.stat0 = numpy.ones((nb_sessions, 1))
            iv_stat_server.stat1 = iv

        iv_stat_server.write(output_file_name)
        if uncertainty:
            path = os.path.splitext(output_file_name)
            write_matrix_hdf5(iv_sigma, path[0] + "_uncertainty" + path[1])