def _read_data_chunk(self): """ Reads a chunk of data for the intended computation into memory """ if self.__start_pos < self.__rank_end_pos: self.__end_pos = int( min(self.__rank_end_pos, self.__start_pos + self._max_pos_per_read)) # DON'T DIRECTLY apply the start and end indices anymore to the h5 dataset. Find out what it means first self.__pixels_in_batch = self.__compute_jobs[self.__start_pos:self. __end_pos] if self.verbose: print('Rank {} will read positions: {}'.format( self.mpi_rank, self.__pixels_in_batch)) bytes_this_read = self.__bytes_per_pos * len( self.__pixels_in_batch) print('Rank {} will read {} of the SOURCE dataset' '.'.format(self.mpi_rank, format_size(bytes_this_read))) if self.mpi_rank == self.__socket_master_rank: tot_workers = self.__ranks_on_socket * self._cores print('Rank: {} available memory: {}. ' '{} workers on this socket will in total read ~ {}' '.'.format( self.mpi_rank, format_size(get_available_memory()), tot_workers, format_size(bytes_this_read * tot_workers))) # Reading as Dask array to minimize memory copies when restructuring in child classes if self.__lazy: main_dset = lazy_load_array(self.h5_main) else: main_dset = self.h5_main self.data = main_dset[self.__pixels_in_batch, :] # DON'T update the start position else: if self.verbose: print('Rank {} - Finished reading all data!'.format( self.mpi_rank)) self.data = None
def format_size(size_in_bytes, decimals=2): """ Formats the provided size in bytes to kB, MB, GB, TB etc. Parameters ---------- size_in_bytes : number size in bytes decimals : uint, optional. default = 2 Number of decimal places to which the size needs to be formatted Returns ------- str String with size formatted correctly """ warn( 'pyUSID.io.io_utils.format_size has been moved to ' 'sidpy.base.string_utils.format_size. This copy in pyUSID will' 'be removed in future release. Please update your import statements', FutureWarning) return sut.format_size(size_in_bytes, decimals=decimals)
def compute(self, override=False, *args, **kwargs): """ Creates placeholders for the results, applies the :meth:`~pyUSID.processing.process.Process._unit_computation` to chunks of the dataset Parameters ---------- override : bool, optional. default = False By default, compute will simply return duplicate results to avoid recomputing or resume computation on a group with partial results. Set to True to force fresh computation. args : list arguments to the mapped function in the correct order kwargs : dict keyword arguments to the mapped function Returns ------- h5_results_grp : :class:`h5py.Group` Group containing all the results """ class SimpleFIFO(object): """ Simple class that maintains a moving average of some numbers. """ def __init__(self, length=5): """ Create a SimpleFIFO object Parameters ---------- length : unsigned integer Number of values that need to be maintained for the moving average """ self.__queue = list() if not isinstance(length, int): raise TypeError('length must be a positive integer') if length <= 0: raise ValueError('length must be a positive integer') self.__max_length = length self.__count = 0 def put(self, item): """ Adds the item to the internal queue. If the size of the queue exceeds its capacity, the oldest item is removed. Parameters ---------- item : float or int Any real valued number """ if (not isinstance(item, Number)) or isinstance(item, complex): raise TypeError( 'Provided item: {} is not a Number'.format(item)) self.__queue.append(item) self.__count += 1 if len(self.__queue) > self.__max_length: _ = self.__queue.pop(0) def get_mean(self): """ Returns the average of the elements within the queue Returns ------- avg : number.Number Mean of all elements within the queue """ return np.mean(self.__queue) def get_cycles(self): """ Returns the number of items that have been added to the queue in total Returns ------- count : int number of items that have been added to the queue in total """ return self.__count if not override: if len(self.duplicate_h5_groups) > 0: if self.mpi_rank == 0: print('Returned previously computed results at ' + self.duplicate_h5_groups[-1].name) self.h5_results_grp = self.duplicate_h5_groups[-1] return self.duplicate_h5_groups[-1] elif len(self.partial_h5_groups ) > 0 and self.h5_results_grp is None: if self.mpi_rank == 0: print('Resuming computation in group: ' + self.partial_h5_groups[-1].name) self.use_partial_computation() resuming = False if self.h5_results_grp is None: # starting fresh if self.verbose and self.mpi_rank == 0: print('Creating HDF5 group and datasets to hold results') self._create_results_datasets() self._write_source_dset_provenance() else: # resuming from previous checkpoint resuming = True self._get_existing_datasets() self.__create_compute_status_dataset() if resuming and self.mpi_rank == 0: percent_complete = int( 100 * len(np.where(self._h5_status_dset[()] == 1)[0]) / self._h5_status_dset.shape[0]) print('Resuming computation. {}% completed already'.format( percent_complete)) self.__assign_job_indices() # Not sure if this is necessary but I don't think it would hurt either if self.mpi_comm is not None: self.mpi_comm.barrier() compute_times = SimpleFIFO(5) write_times = SimpleFIFO(5) orig_rank_start = self.__start_pos if self.mpi_rank == 0 and self.mpi_size == 1: if self.__resume_implemented: print( '\tThis class (likely) supports interruption and resuming of computations!\n' '\tIf you are operating in a python console, press Ctrl+C or Cmd+C to abort\n' '\tIf you are in a Jupyter notebook, click on "Kernel">>"Interrupt"\n' '\tIf you are operating on a cluster and your job gets killed, re-run the job to resume\n' ) else: print( '\tThis class does NOT support interruption and resuming of computations.\n' '\tIn order to enable this feature, simply implement the _get_existing_datasets() function' ) if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with nothing loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) self._read_data_chunk() if self.mpi_comm is not None: self.mpi_comm.barrier() if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with only raw data loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) while self.data is not None: num_jobs_in_batch = self.__end_pos - self.__start_pos t_start_1 = tm.time() self._unit_computation(*args, **kwargs) comp_time = np.round(tm.time() - t_start_1, decimals=2) # in seconds time_per_pix = comp_time / num_jobs_in_batch compute_times.put(time_per_pix) if self.verbose: print( 'Rank {} - computed chunk in {} or {} per pixel. Average: {} per pixel' '.'.format(self.mpi_rank, format_time(comp_time), format_time(time_per_pix), format_time(compute_times.get_mean()))) # Ranks can become memory starved. Check memory usage - raw data + results in memory at this point if self.verbose and self.mpi_rank == self.__socket_master_rank: print( 'Rank: {} - now holding onto raw data + results has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) t_start_2 = tm.time() self._write_results_chunk() # NOW, update the positions. Users are NOT allowed to touch start and end pos self.__start_pos = self.__end_pos # Leaving in this provision that will allow restarting of processes if self.mpi_size == 1: self.h5_results_grp.attrs['last_pixel'] = self.__end_pos # Child classes don't even have to worry about flushing. Process will do it. self.h5_main.file.flush() dump_time = np.round(tm.time() - t_start_2, decimals=2) write_times.put(dump_time / num_jobs_in_batch) if self.verbose: print('Rank {} - wrote its {} pixel chunk in {}'.format( self.mpi_rank, num_jobs_in_batch, format_time(dump_time))) time_remaining = (self.__rank_end_pos - self.__end_pos) * \ (compute_times.get_mean() + write_times.get_mean()) if self.verbose or self.mpi_rank == 0: percent_complete = int(100 * (self.__end_pos - orig_rank_start) / (self.__rank_end_pos - orig_rank_start)) print('Rank {} - {}% complete. Time remaining: {}'.format( self.mpi_rank, percent_complete, format_time(time_remaining))) # All ranks should mark the pixels for this batch as completed. 'last_pixel' attribute will be updated later # Setting each section to 1 independently for curr_slice in integers_to_slices(self.__pixels_in_batch): self._h5_status_dset[curr_slice] = 1 self._read_data_chunk() if self.verbose: print('Rank {} - Finished computing all jobs!'.format( self.mpi_rank)) if self.mpi_comm is not None: self.mpi_comm.barrier() if self.mpi_rank == 0: print('Finished processing the entire dataset!') # Update the legacy 'last_pixel' attribute here: if self.mpi_rank == 0: self.h5_results_grp.attrs['last_pixel'] = self.h5_main.shape[0] return self.h5_results_grp
def __set_memory(self, man_mem_limit=None, mem_multiplier=1.0): """ Checks memory capabilities of each node and sets the recommended data chunk sizes to be used by analysis methods. This function can work with clusters with heterogeneous memory sizes (e.g. CADES SHPC Condo). Parameters ---------- man_mem_limit : uint, optional, Default = None (all available memory) The amount a memory in Mb to use in the computation mem_multiplier : float, optional. Default = 1 mem_multiplier is the number that will be multiplied with the (byte) size of a single position in the source dataset in order to better estimate the number of positions that can be processed at any given time (how many pixels of the source and results datasets can be retained in memory). The default value of 1.0 only accounts for the source dataset. A value greater than 1 would account for the size of results datasets as well. For example, if the result dataset is the same size and precision as the source dataset, the multiplier will be 2 (1 for source, 1 for result) """ if not isinstance(mem_multiplier, float): raise TypeError('mem_multiplier must be a floating point number') mem_multiplier = abs(mem_multiplier) if mem_multiplier < 1: raise ValueError('mem_multiplier must be at least 1') avail_mem_bytes = get_available_memory() # in bytes if self.verbose and self.mpi_rank == self.__socket_master_rank: # expected to be the same for all ranks so just use this. print('Rank {} - on socket with {} cores and {} avail. RAM shared ' 'by {} ranks each given {} cores' '.'.format(self.__socket_master_rank, psutil.cpu_count(), format_size(avail_mem_bytes), self.__ranks_on_socket, self._cores)) if man_mem_limit is None: man_mem_limit = avail_mem_bytes else: if not isinstance(man_mem_limit, int): raise TypeError('man_mem_limit must be a whole number') # Note that man_mem_limit is specified in mega bytes man_mem_limit = abs(man_mem_limit) * 1024**2 # in bytes if self.verbose and self.mpi_rank == 0: print('User has requested to use no more than {} of memory' '.'.format(format_size(man_mem_limit))) max_mem_bytes = min(avail_mem_bytes, man_mem_limit) # Remember that multiple processes (either via MPI or joblib) will share this socket # This makes logical sense but there's always too much free memory and the # cores are starved. max_mem_per_worker = max_mem_bytes / (self._cores * self.__ranks_on_socket) if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank {}: Each of the {} workers on this socket are allowed ' 'to use {} of RAM' '.'.format(self.mpi_rank, self._cores * self.__ranks_on_socket, format_size(max_mem_per_worker))) # Now calculate the number of positions OF RAW DATA ONLY that can be # stored in memory in one go PER worker self.__bytes_per_pos = self.h5_main.dtype.itemsize * self.h5_main.shape[ 1] if self.verbose and self.mpi_rank == 0: print('Each position in the SOURCE dataset is {} large' '.'.format(format_size(self.__bytes_per_pos))) # Now multiply this with a factor that takes into account the expected # sizes of the results (Final and intermediate) datasets. self.__bytes_per_pos *= mem_multiplier if self.verbose and self.mpi_rank == 0 and mem_multiplier > 1: print('Each position of the source and results dataset(s) is {} ' 'large.'.format(format_size(self.__bytes_per_pos))) self._max_pos_per_read = int( np.floor(max_mem_per_worker / self.__bytes_per_pos)) if self.verbose and self.mpi_rank == self.__socket_master_rank: title = 'SOURCE dataset only' if mem_multiplier > 1: title = 'source and result(s) datasets' # expected to be the same for all ranks so just use this. print('Rank {}: Workers on this socket allowed to read {} ' 'positions of the {} per chunk' '.'.format(self.mpi_rank, self._max_pos_per_read, title))