示例#1
0
def plot_change_width_scatter(data, fitter, fits):
    bin_edges = fits.change_distribution_params.bin_edges
    bin_centers = fits.change_distribution_params.bin_centers
    shape = fitter.shape

    def get_width(weights):
        return change_distribution_width_cumsum(bin_centers, weights)

    width_pairs = []
    for fit in iterate_fits(fits):
        weights_single = calc_change_distribution(shape, fit.theta, bin_edges)
        width_single = get_width(weights_single)
        width_bootstrap = get_width(fit.change_distribution_weights)
        width_pairs.append( (width_single, width_bootstrap) )        
    width_single,width_bootstrap = zip(*width_pairs)
    
    fig = plt.figure()
    ax = fig.add_axes([0.12,0.12,0.8,0.8])
    maxw = int(math.ceil(max(max(width_single), max(width_bootstrap))))
    minw = int(math.floor(min(min(width_single), min(width_bootstrap)))) 
    ax.scatter(width_single, width_bootstrap, alpha=0.8)
    ax.plot(np.mean(width_single), np.mean(width_bootstrap), 'rx', markersize=8, markeredgewidth=2, label='mean')
    ax.plot([minw, maxw], [minw, maxw],'k--')
    ax.set_xlim(minw,maxw)
    ax.set_ylim(minw,maxw)
    ticks = range(minw, maxw+1)
    ax.set_yticks(ticks)
    ax.set_xticks(ticks)
    ax.set_xticklabels([str(t) for t in ticks], fontsize=cfg.fontsize)
    ax.set_yticklabels([str(t) for t in ticks], fontsize=cfg.fontsize)
    ax.set_xlabel('width of single fit', fontsize=cfg.fontsize)
    ax.set_ylabel('width by bootstrap', fontsize=cfg.fontsize)
    ax.set_title('change distribution of single fit vs. bootstrap', fontsize=cfg.fontsize)

    return fig
示例#2
0
def plot_change_width_scatter(data, fitter, fits):
    bin_edges = fits.change_distribution_params.bin_edges
    bin_centers = fits.change_distribution_params.bin_centers
    shape = fitter.shape

    def get_width(weights):
        return change_distribution_width_cumsum(bin_centers, weights)

    width_pairs = []
    for fit in iterate_fits(fits):
        weights_single = calc_change_distribution(shape, fit.theta, bin_edges)
        width_single = get_width(weights_single)
        width_bootstrap = get_width(fit.change_distribution_weights)
        width_pairs.append((width_single, width_bootstrap))
    width_single, width_bootstrap = zip(*width_pairs)

    fig = plt.figure()
    ax = fig.add_axes([0.12, 0.12, 0.8, 0.8])
    maxw = int(math.ceil(max(max(width_single), max(width_bootstrap))))
    minw = int(math.floor(min(min(width_single), min(width_bootstrap))))
    ax.scatter(width_single, width_bootstrap, alpha=0.8)
    ax.plot(np.mean(width_single),
            np.mean(width_bootstrap),
            'rx',
            markersize=8,
            markeredgewidth=2,
            label='mean')
    ax.plot([minw, maxw], [minw, maxw], 'k--')
    ax.set_xlim(minw, maxw)
    ax.set_ylim(minw, maxw)
    ticks = range(minw, maxw + 1)
    ax.set_yticks(ticks)
    ax.set_xticks(ticks)
    ax.set_xticklabels([str(t) for t in ticks], fontsize=cfg.fontsize)
    ax.set_yticklabels([str(t) for t in ticks], fontsize=cfg.fontsize)
    ax.set_xlabel('width of single fit', fontsize=cfg.fontsize)
    ax.set_ylabel('width by bootstrap', fontsize=cfg.fontsize)
    ax.set_title('change distribution of single fit vs. bootstrap',
                 fontsize=cfg.fontsize)

    return fig
示例#3
0
data = GeneData.load('both').scale_ages(age_scaler)
shape = Sigslope('sigslope80')
fitter = Fitter(shape, sigma_prior='normal')
bin_edges, bin_centers = get_bins(data)

GRs = [
    ('GLRA2', 'STC', (5, 12)),
    ('HTR2B', 'MD', (3.5, 6)),
    ('SLC18A2', 'HIP', (3.5, 5.5)),
]

for g, r, yrange in GRs:
    print 'Doing {}@{}...'.format(g, r)
    series = data.get_one_series(g, r)
    theta, sigma, _, _ = fitter.fit(series.ages, series.single_expression)
    weights = calc_change_distribution(shape, theta, bin_edges)
    fig = plot_one_series(series, shape, theta, bin_centers, weights, yrange)
    save_figure(fig,
                'RP/fit-examples-{}-{}.png'.format(g, r),
                under_results=True)

    # now with bootstrap estimate of change distribution
    print 'Doing bootstrap...'
    theta_samples = fitter.parametric_bootstrap(series.ages, theta, sigma)
    weights = calc_bootstrap_change_distribution(shape, theta_samples,
                                                 bin_edges)
    fig = plot_one_series(series, shape, theta, bin_centers, weights, yrange)
    save_figure(fig,
                'RP/fit-examples-{}-{}-bootstrap.png'.format(g, r),
                under_results=True)
cfg.verbosity = 1
age_scaler = LogScaler()

data = GeneData.load('both').scale_ages(age_scaler)
shape = Sigslope('sigslope80')
fitter = Fitter(shape, sigma_prior='normal')
bin_edges, bin_centers = get_bins(data)

GRs = [
    ('GLRA2','STC', (5, 12)), 
    ('HTR2B','MD', (3.5, 6)), 
    ('SLC18A2','HIP', (3.5, 5.5)), 
]

for g,r,yrange in GRs:
    print 'Doing {}@{}...'.format(g,r)
    series = data.get_one_series(g,r)
    theta,sigma,_,_ = fitter.fit(series.ages, series.single_expression)
    weights = calc_change_distribution(shape, theta, bin_edges)
    fig = plot_one_series(series, shape, theta, bin_centers, weights, yrange)
    save_figure(fig,'RP/fit-examples-{}-{}.png'.format(g,r), under_results=True)
    
    # now with bootstrap estimate of change distribution
    print 'Doing bootstrap...'
    theta_samples = fitter.parametric_bootstrap(series.ages, theta, sigma)
    weights = calc_bootstrap_change_distribution(shape, theta_samples, bin_edges)
    fig = plot_one_series(series, shape, theta, bin_centers, weights, yrange)
    save_figure(fig,'RP/fit-examples-{}-{}-bootstrap.png'.format(g,r), under_results=True)