示例#1
0
class A3CTrainingThread(CommonWorker):
    """Asynchronous Actor-Critic Training Thread Class."""
    log_interval = 100
    perf_log_interval = 1000
    local_t_max = 20
    entropy_beta = 0.01
    gamma = 0.99
    shaping_actions = -1  # -1 all actions, 0 exclude noop
    transformed_bellman = False
    clip_norm = 0.5
    use_grad_cam = False
    use_sil = False
    log_idx = 0
    reward_constant = 0

    def __init__(self,
                 thread_index,
                 global_net,
                 local_net,
                 initial_learning_rate,
                 learning_rate_input,
                 grad_applier,
                 device=None,
                 no_op_max=30):
        """Initialize A3CTrainingThread class."""
        assert self.action_size != -1

        self.is_sil_thread = False
        self.is_refresh_thread = False

        self.thread_idx = thread_index
        self.learning_rate_input = learning_rate_input
        self.local_net = local_net

        self.no_op_max = no_op_max
        self.override_num_noops = 0 if self.no_op_max == 0 else None

        logger.info("===A3C thread_index: {}===".format(self.thread_idx))
        logger.info("device: {}".format(device))
        logger.info("use_sil: {}".format(
            colored(self.use_sil, "green" if self.use_sil else "red")))
        logger.info("local_t_max: {}".format(self.local_t_max))
        logger.info("action_size: {}".format(self.action_size))
        logger.info("entropy_beta: {}".format(self.entropy_beta))
        logger.info("gamma: {}".format(self.gamma))
        logger.info("reward_type: {}".format(self.reward_type))
        logger.info("transformed_bellman: {}".format(
            colored(self.transformed_bellman,
                    "green" if self.transformed_bellman else "red")))
        logger.info("clip_norm: {}".format(self.clip_norm))
        logger.info("use_grad_cam: {}".format(
            colored(self.use_grad_cam,
                    "green" if self.use_grad_cam else "red")))

        reward_clipped = True if self.reward_type == 'CLIP' else False
        local_vars = self.local_net.get_vars

        with tf.device(device):
            self.local_net.prepare_loss(entropy_beta=self.entropy_beta,
                                        critic_lr=0.5)
            var_refs = [v._ref() for v in local_vars()]

            self.gradients = tf.gradients(self.local_net.total_loss, var_refs)

        global_vars = global_net.get_vars

        with tf.device(device):
            if self.clip_norm is not None:
                self.gradients, grad_norm = tf.clip_by_global_norm(
                    self.gradients, self.clip_norm)
            self.gradients = list(zip(self.gradients, global_vars()))
            self.apply_gradients = grad_applier.apply_gradients(self.gradients)

        self.sync = self.local_net.sync_from(global_net)

        self.game_state = GameState(env_id=self.env_id,
                                    display=False,
                                    no_op_max=self.no_op_max,
                                    human_demo=False,
                                    episode_life=True,
                                    override_num_noops=self.override_num_noops)

        self.local_t = 0

        self.initial_learning_rate = initial_learning_rate

        self.episode_reward = 0
        self.episode_steps = 0

        # variable controlling log output
        self.prev_local_t = 0

        with tf.device(device):
            if self.use_grad_cam:
                self.action_meaning = self.game_state.env.unwrapped \
                    .get_action_meanings()
                self.local_net.build_grad_cam_grads()

        if self.use_sil:
            self.episode = SILReplayMemory(
                self.action_size,
                max_len=None,
                gamma=self.gamma,
                clip=reward_clipped,
                height=self.local_net.in_shape[0],
                width=self.local_net.in_shape[1],
                phi_length=self.local_net.in_shape[2],
                reward_constant=self.reward_constant)

    def train(self, sess, global_t, train_rewards):
        """Train A3C."""
        states = []
        fullstates = []
        actions = []
        rewards = []
        values = []
        rho = []

        terminal_pseudo = False  # loss of life
        terminal_end = False  # real terminal

        # copy weights from shared to local
        sess.run(self.sync)

        start_local_t = self.local_t

        # t_max times loop
        for i in range(self.local_t_max):
            state = cv2.resize(self.game_state.s_t,
                               self.local_net.in_shape[:-1],
                               interpolation=cv2.INTER_AREA)
            fullstate = self.game_state.clone_full_state()

            pi_, value_, logits_ = self.local_net.run_policy_and_value(
                sess, state)
            action = self.pick_action(logits_)

            states.append(state)
            fullstates.append(fullstate)
            actions.append(action)
            values.append(value_)

            if self.thread_idx == self.log_idx \
               and self.local_t % self.log_interval == 0:
                log_msg1 = "lg={}".format(
                    np.array_str(logits_, precision=4, suppress_small=True))
                log_msg2 = "pi={}".format(
                    np.array_str(pi_, precision=4, suppress_small=True))
                log_msg3 = "V={:.4f}".format(value_)
                logger.debug(log_msg1)
                logger.debug(log_msg2)
                logger.debug(log_msg3)

            # process game
            self.game_state.step(action)

            # receive game result
            reward = self.game_state.reward
            terminal = self.game_state.terminal

            self.episode_reward += reward

            if self.use_sil:
                # save states in episode memory
                self.episode.add_item(self.game_state.s_t, fullstate, action,
                                      reward, terminal)

            if self.reward_type == 'CLIP':
                reward = np.sign(reward)

            rewards.append(reward)

            self.local_t += 1
            self.episode_steps += 1
            global_t += 1

            # s_t1 -> s_t
            self.game_state.update()

            if terminal:
                terminal_pseudo = True

                env = self.game_state.env
                name = 'EpisodicLifeEnv'
                if get_wrapper_by_name(env, name).was_real_done:
                    # reduce log freq
                    if self.thread_idx == self.log_idx:
                        log_msg = "train: worker={} global_t={} local_t={}".format(
                            self.thread_idx, global_t, self.local_t)
                        score_str = colored(
                            "score={}".format(self.episode_reward), "magenta")
                        steps_str = colored(
                            "steps={}".format(self.episode_steps), "blue")
                        log_msg += " {} {}".format(score_str, steps_str)
                        logger.debug(log_msg)

                    train_rewards['train'][global_t] = (self.episode_reward,
                                                        self.episode_steps)
                    self.record_summary(score=self.episode_reward,
                                        steps=self.episode_steps,
                                        episodes=None,
                                        global_t=global_t,
                                        mode='Train')
                    self.episode_reward = 0
                    self.episode_steps = 0
                    terminal_end = True

                self.game_state.reset(hard_reset=False)
                break

        cumsum_reward = 0.0
        if not terminal:
            state = cv2.resize(self.game_state.s_t,
                               self.local_net.in_shape[:-1],
                               interpolation=cv2.INTER_AREA)
            cumsum_reward = self.local_net.run_value(sess, state)

        actions.reverse()
        states.reverse()
        rewards.reverse()
        values.reverse()

        batch_state = []
        batch_action = []
        batch_adv = []
        batch_cumsum_reward = []

        # compute and accumulate gradients
        for (ai, ri, si, vi) in zip(actions, rewards, states, values):
            if self.transformed_bellman:
                ri = np.sign(ri) * self.reward_constant + ri
                cumsum_reward = transform_h(ri + self.gamma *
                                            transform_h_inv(cumsum_reward))
            else:
                cumsum_reward = ri + self.gamma * cumsum_reward
            advantage = cumsum_reward - vi

            # convert action to one-hot vector
            a = np.zeros([self.action_size])
            a[ai] = 1

            batch_state.append(si)
            batch_action.append(a)
            batch_adv.append(advantage)
            batch_cumsum_reward.append(cumsum_reward)

        cur_learning_rate = self._anneal_learning_rate(
            global_t, self.initial_learning_rate)

        feed_dict = {
            self.local_net.s: batch_state,
            self.local_net.a: batch_action,
            self.local_net.advantage: batch_adv,
            self.local_net.cumulative_reward: batch_cumsum_reward,
            self.learning_rate_input: cur_learning_rate,
        }

        sess.run(self.apply_gradients, feed_dict=feed_dict)

        t = self.local_t - self.prev_local_t
        if (self.thread_idx == self.log_idx and t >= self.perf_log_interval):
            self.prev_local_t += self.perf_log_interval
            elapsed_time = time.time() - self.start_time
            steps_per_sec = global_t / elapsed_time
            logger.info("worker-{}, log_worker-{}".format(
                self.thread_idx, self.log_idx))
            logger.info("Performance : {} STEPS in {:.0f} sec. {:.0f}"
                        " STEPS/sec. {:.2f}M STEPS/hour.".format(
                            global_t, elapsed_time, steps_per_sec,
                            steps_per_sec * 3600 / 1000000.))

        # return advanced local step size
        diff_local_t = self.local_t - start_local_t
        return diff_local_t, terminal_end, terminal_pseudo
class RefreshThread(CommonWorker):
    """Rollout Thread Class."""
    advice_confidence = 0.8
    gamma = 0.99

    def __init__(self, thread_index, action_size, env_id,
                 global_a3c, local_a3c, update_in_rollout, nstep_bc,
                 global_pretrained_model, local_pretrained_model,
                 transformed_bellman=False, no_op_max=0,
                 device='/cpu:0', entropy_beta=0.01, clip_norm=None,
                 grad_applier=None, initial_learn_rate=0.007,
                 learning_rate_input=None):
        """Initialize RolloutThread class."""
        self.is_refresh_thread = True
        self.action_size = action_size
        self.thread_idx = thread_index
        self.transformed_bellman = transformed_bellman
        self.entropy_beta = entropy_beta
        self.clip_norm = clip_norm
        self.initial_learning_rate = initial_learn_rate
        self.learning_rate_input = learning_rate_input

        self.no_op_max = no_op_max
        self.override_num_noops = 0 if self.no_op_max == 0 else None

        logger.info("===REFRESH thread_index: {}===".format(self.thread_idx))
        logger.info("device: {}".format(device))
        logger.info("action_size: {}".format(self.action_size))
        logger.info("reward_type: {}".format(self.reward_type))
        logger.info("transformed_bellman: {}".format(
            colored(self.transformed_bellman,
                    "green" if self.transformed_bellman else "red")))
        logger.info("update in rollout: {}".format(
            colored(update_in_rollout, "green" if update_in_rollout else "red")))
        logger.info("N-step BC: {}".format(nstep_bc))

        self.reward_clipped = True if self.reward_type == 'CLIP' else False

        # setup local a3c
        self.local_a3c = local_a3c
        self.sync_a3c = self.local_a3c.sync_from(global_a3c)
        with tf.device(device):
            local_vars = self.local_a3c.get_vars
            self.local_a3c.prepare_loss(
                entropy_beta=self.entropy_beta, critic_lr=0.5)
            var_refs = [v._ref() for v in local_vars()]
            self.rollout_gradients = tf.gradients(self.local_a3c.total_loss, var_refs)
            global_vars = global_a3c.get_vars
            if self.clip_norm is not None:
                self.rollout_gradients, grad_norm = tf.clip_by_global_norm(
                    self.rollout_gradients, self.clip_norm)
            self.rollout_gradients = list(zip(self.rollout_gradients, global_vars()))
            self.rollout_apply_gradients = grad_applier.apply_gradients(self.rollout_gradients)

        # setup local pretrained model
        self.local_pretrained = None
        if nstep_bc > 0:
            assert local_pretrained_model is not None
            assert global_pretrained_model is not None
            self.local_pretrained = local_pretrained_model
            self.sync_pretrained = self.local_pretrained.sync_from(global_pretrained_model)

        # setup env
        self.rolloutgame = GameState(env_id=env_id, display=False,
                            no_op_max=0, human_demo=False, episode_life=True,
                            override_num_noops=0)
        self.local_t = 0
        self.episode_reward = 0
        self.episode_steps = 0

        self.action_meaning = self.rolloutgame.env.unwrapped.get_action_meanings()

        assert self.local_a3c is not None
        if nstep_bc > 0:
            assert self.local_pretrained is not None

        self.episode = SILReplayMemory(
            self.action_size, max_len=None, gamma=self.gamma,
            clip=self.reward_clipped,
            height=self.local_a3c.in_shape[0],
            width=self.local_a3c.in_shape[1],
            phi_length=self.local_a3c.in_shape[2],
            reward_constant=self.reward_constant)


    def record_rollout(self, score=0, steps=0, old_return=0, new_return=0,
                       global_t=0, rollout_ctr=0, rollout_added_ctr=0,
                       mode='Rollout', confidence=None, episodes=None):
        """Record rollout summary."""
        summary = tf.Summary()
        summary.value.add(tag='{}/score'.format(mode),
                          simple_value=float(score))
        summary.value.add(tag='{}/old_return_from_s'.format(mode),
                          simple_value=float(old_return))
        summary.value.add(tag='{}/new_return_from_s'.format(mode),
                          simple_value=float(new_return))
        summary.value.add(tag='{}/steps'.format(mode),
                          simple_value=float(steps))
        summary.value.add(tag='{}/all_rollout_ctr'.format(mode),
                          simple_value=float(rollout_ctr))
        summary.value.add(tag='{}/rollout_added_ctr'.format(mode),
                          simple_value=float(rollout_added_ctr))
        if confidence is not None:
            summary.value.add(tag='{}/advice-confidence'.format(mode),
                              simple_value=float(confidence))
        if episodes is not None:
            summary.value.add(tag='{}/episodes'.format(mode),
                              simple_value=float(episodes))
        self.writer.add_summary(summary, global_t)
        self.writer.flush()

    def compute_return_for_state(self, rewards, terminal):
        """Compute expected return."""
        length = np.shape(rewards)[0]
        returns = np.empty_like(rewards, dtype=np.float32)

        if self.reward_clipped:
            rewards = np.clip(rewards, -1., 1.)
        else:
            rewards = np.sign(rewards) * self.reward_constant + rewards

        for i in reversed(range(length)):
            if terminal[i]:
                returns[i] = rewards[i] if self.reward_clipped else transform_h(rewards[i])
            else:
                if self.reward_clipped:
                    returns[i] = rewards[i] + self.gamma * returns[i+1]
                else:
                    # apply transformed expected return
                    exp_r_t = self.gamma * transform_h_inv(returns[i+1])
                    returns[i] = transform_h(rewards[i] + exp_r_t)
        return returns[0]

    def update_a3c(self, sess, actions, states, rewards, values, global_t):
        cumsum_reward = 0.0
        actions.reverse()
        states.reverse()
        rewards.reverse()
        values.reverse()

        batch_state = []
        batch_action = []
        batch_adv = []
        batch_cumsum_reward = []

        # compute and accumulate gradients
        for(ai, ri, si, vi) in zip(actions, rewards, states, values):
            if self.transformed_bellman:
                ri = np.sign(ri) * self.reward_constant + ri
                cumsum_reward = transform_h(
                    ri + self.gamma * transform_h_inv(cumsum_reward))
            else:
                cumsum_reward = ri + self.gamma * cumsum_reward
            advantage = cumsum_reward - vi

            # convert action to one-hot vector
            a = np.zeros([self.action_size])
            a[ai] = 1

            batch_state.append(si)
            batch_action.append(a)
            batch_adv.append(advantage)
            batch_cumsum_reward.append(cumsum_reward)

        cur_learning_rate = self._anneal_learning_rate(global_t,
                self.initial_learning_rate )

        feed_dict = {
            self.local_a3c.s: batch_state,
            self.local_a3c.a: batch_action,
            self.local_a3c.advantage: batch_adv,
            self.local_a3c.cumulative_reward: batch_cumsum_reward,
            self.learning_rate_input: cur_learning_rate,
            }

        sess.run(self.rollout_apply_gradients, feed_dict=feed_dict)

        return batch_adv

    def rollout(self, a3c_sess, folder, pretrain_sess, global_t, past_state,
                add_all_rollout, ep_max_steps, nstep_bc, update_in_rollout):
        """Perform one rollout until terminal."""
        a3c_sess.run(self.sync_a3c)
        if nstep_bc > 0:
            pretrain_sess.run(self.sync_pretrained)

        _, fs, old_a, old_return, _, _ = past_state

        states = []
        actions = []
        rewards = []
        values = []
        terminals = []
        confidences = []

        rollout_ctr, rollout_added_ctr = 0, 0
        rollout_new_return, rollout_old_return = 0, 0

        terminal_pseudo = False  # loss of life
        terminal_end = False  # real terminal
        add = False

        self.rolloutgame.reset(hard_reset=True)
        self.rolloutgame.restore_full_state(fs)
        # check if restore successful
        fs_check = self.rolloutgame.clone_full_state()
        assert fs_check.all() == fs.all()
        del fs_check

        start_local_t = self.local_t
        self.rolloutgame.step(0)

        # prevent rollout too long, set max_ep_steps to be lower than ALE default
        # see https://github.com/openai/gym/blob/54f22cf4db2e43063093a1b15d968a57a32b6e90/gym/envs/__init__.py#L635
        # but in all games tested, no rollout exceeds ep_max_steps
        while ep_max_steps > 0:
            state = cv2.resize(self.rolloutgame.s_t,
                       self.local_a3c.in_shape[:-1],
                       interpolation=cv2.INTER_AREA)
            fullstate = self.rolloutgame.clone_full_state()

            if nstep_bc > 0: # LiDER-TA or BC
                model_pi = self.local_pretrained.run_policy(pretrain_sess, state)
                action, confidence = self.choose_action_with_high_confidence(
                                          model_pi, exclude_noop=False)
                confidences.append(confidence) # not using "confidences" for anything
                nstep_bc -= 1
            else: # LiDER, refresh with current policy
                pi_, _, logits_ = self.local_a3c.run_policy_and_value(a3c_sess,
                                                                      state)
                action = self.pick_action(logits_)
                confidences.append(pi_[action])

            value_ = self.local_a3c.run_value(a3c_sess, state)
            values.append(value_)
            states.append(state)
            actions.append(action)

            self.rolloutgame.step(action)

            ep_max_steps -= 1

            reward = self.rolloutgame.reward
            terminal = self.rolloutgame.terminal
            terminals.append(terminal)

            self.episode_reward += reward

            self.episode.add_item(self.rolloutgame.s_t, fullstate, action,
                                  reward, terminal, from_rollout=True)

            if self.reward_type == 'CLIP':
                reward = np.sign(reward)
            rewards.append(reward)

            self.local_t += 1
            self.episode_steps += 1
            global_t += 1

            self.rolloutgame.update()

            if terminal:
                terminal_pseudo = True
                env = self.rolloutgame.env
                name = 'EpisodicLifeEnv'
                rollout_ctr += 1
                terminal_end = get_wrapper_by_name(env, name).was_real_done

                new_return = self.compute_return_for_state(rewards, terminals)

                if not add_all_rollout:
                    if new_return > old_return:
                        add = True
                else:
                    add = True

                if add:
                    rollout_added_ctr += 1
                    rollout_new_return += new_return
                    rollout_old_return += old_return
                    # update policy immediate using a good rollout
                    if update_in_rollout:
                        batch_adv = self.update_a3c(a3c_sess, actions, states, rewards, values, global_t)

                self.episode_reward = 0
                self.episode_steps = 0
                self.rolloutgame.reset(hard_reset=True)
                break

        diff_local_t = self.local_t - start_local_t

        return diff_local_t, terminal_end, terminal_pseudo, rollout_ctr, \
               rollout_added_ctr, add, rollout_new_return, rollout_old_return