error_arr = [0] * time for i in range(itr): print(i) initial = matrix([1, 1, 1, 2, 2, 1, -1, -1, 1, 3], dtype=float).T robots = [None] * N for n in range(N): robots[n] = RobotLocalCI(n, initial.copy()) landmarks = [None] * M for m in range(M): landmarks[m] = sim_env.Landmark( m, matrix([0.01, 0.02], dtype=float).getT()) for t in range(time): # motion propagation for mp_iteration in range(sim_env.num_of_m_p): robots[0].prop_update() robots[1].prop_update() robots[2].prop_update() robots[3].prop_update() robots[4].prop_update() #robot 0 [dis, phi] = sim_env.relative_measurement(robots[0].position, robots[0].theta,
gs_ci_robots = [None] * N for n in range(N): robots[n] = Robot(_position=initial[2 * n:2 * n + 2]) gs_ci_robots[n] = GS_CI(n, initial.copy()) ls_cen_team = LS_Cen(initial.copy()) ls_ci_team = LS_CI(initial.copy()) ls_sci_team = LS_SCI(initial.copy()) ls_bda_team = LS_BDA(initial.copy()) landmarks = [None] * M for m in range(M): landmarks[m] = sim_env.Landmark( m, np.matrix(sim_env.landmark_position, dtype=float).getT()) # simulation body for t in range(total_T): # reset theta for n in range(N): gs_ci_robots[n].theta = robots[n].theta ls_cen_team.theta[n] = robots[n].theta ls_ci_team.theta[n] = robots[n].theta ls_sci_team.theta[n] = robots[n].theta ls_bda_team.theta[n] = robots[n].theta # motion propagation