示例#1
0
class TupleExtractor(object):
    def __init__(self):
        try:
            self.entity2relations_dic = pickle.load(
                open('../data/entity2relation_dic.pkl', 'rb'))
        except:
            self.entity2relations_dic = {}
        try:
            self.sentencepair2sim = pickle.load(
                open('../data/sentencepair2sim_dic.pkl', 'rb'))
        except:
            self.sentencepair2sim = {}
        self.simmer = BertSim()
        self.simmer.set_mode(tf.estimator.ModeKeys.PREDICT)
        print('tuples extractor loaded')

    def extract_tuples(self, candidate_entitys, question):
        ''''''
        candidate_tuples = {}

        for entity in candidate_entitys:
            #得到该实体的所有关系路径
            starttime = time.time()

            relations = GetRelationPaths(entity)

            mention = candidate_entitys[entity][0]
            for r in relations:

                this_tuple = tuple([entity] + r)  #生成候选tuple
                predicates = [relation[1:-1]
                              for relation in r]  #python-list 关系名列表

                human_question = '的'.join([mention] + predicates)

                score = [entity] + [s for s in candidate_entitys[entity][0:1]
                                    ]  #初始化特征

                try:
                    sim2 = self.sentencepair2sim[question + human_question]
                except:
                    sim2 = self.simmer.predict(question, human_question)[0][1]
                    self.sentencepair2sim[question + human_question] = sim2
                self.sentencepair2sim[question + human_question] = sim2
                score.append(sim2)

                candidate_tuples[this_tuple] = score
            print('====查询候选关系并计算特征耗费%.2f秒====' % (time.time() - starttime))

        return candidate_tuples

    def GetCandidateAns(self, corpus):
        '''根据mention,得到所有候选实体,进一步去知识库检索候选答案
        候选答案格式为tuple(entity,relation1,relation2) 这样便于和标准答案对比
        '''
        true_num = 0
        hop2_num = 0
        hop2_true_num = 0
        all_tuples_num = 0
        for i in range(len(corpus)):
            dic = corpus[i]
            question = dic['question']
            gold_tuple = dic['gold_tuple']
            gold_entitys = dic['gold_entitys']
            candidate_entitys = dic['candidate_entity_filter']

            candidate_tuples = self.extract_tuples(candidate_entitys, question)
            print(i)
            print(question)
            all_tuples_num += len(candidate_tuples)
            dic['candidate_tuples'] = candidate_tuples

            #判断gold tuple是否包含在candidate_tuples_list中
            if_true = 0
            for thistuple in candidate_tuples:
                if len(gold_tuple) == len(
                        set(gold_tuple).intersection(set(thistuple))):
                    if_true = 1
                    break
            if if_true == 1:
                true_num += 1
                if len(gold_tuple) <= 3 and len(gold_entitys) == 1:
                    hop2_true_num += 1
            if len(gold_tuple) <= 3 and len(gold_entitys) == 1:
                hop2_num += 1

        print('所有问题里,候选答案能覆盖标准查询路径的比例为:%.3f' % (true_num / len(corpus)))
        print('单实体问题中,候选答案能覆盖标准查询路径的比例为:%.3f' % (hop2_true_num / hop2_num))
        print('平均每个问题的候选答案数量为:%.3f' % (all_tuples_num / len(corpus)))
        pickle.dump(self.entity2relations_dic,
                    open('../data/entity2relation_dic.pkl', 'wb'))
        pickle.dump(self.sentencepair2sim,
                    open('../data/sentencepair2sim_dic.pkl', 'wb'))
        return corpus
示例#2
0
class AnswerCandidate(Candidate):
    def __init__(self,
                 entity2relations_dict='data/entity2relations_dict.pkl',
                 seqPair2similarity_dict='data/seqPair2similarity_dict.pkl'):
        self._entity2relations = self._load_dict(entity2relations_dict)
        self._seqPair2similarity = self._load_dict(seqPair2similarity_dict)
        self._similarity_dict_path = seqPair2similarity_dict
        self._relation_paths_dict_path = entity2relations_dict
        self._model = BertSim()
        self._model.mode = tf.estimator.ModeKeys.PREDICT

    def _similarity_of(self, faked, seq):
        k = faked + seq
        if k not in self._seqPair2similarity:
            self._seqPair2similarity[k] = self._model.predict(faked, seq)
        return self._seqPair2similarity[k]

    def _relation_paths_of(self, entity):
        if entity not in self._entity2relations:
            return []
        return self._entity2relations[entity]

    def _candidates_of(self, entity2feats, question):
        answer2feats = {}
        for entity, feats in entity2feats.items():
            relation_paths = self._relation_paths_of(entity)
            if not relation_paths:
                continue
            mention = feats[0]
            for relations in relation_paths:
                answer = (entity, *relations)
                predicates = [spo[1:-1] for spo in relations]
                hypothesis = '的'.join([mention] + predicates)
                feats = [
                    entity, mention,
                    self._similarity_of(hypothesis, question)
                ]
                answer2feats[answer] = feats
        return answer2feats

    def candidates_of(self, subject2feats: Dict[str, list], question: str):
        return self._candidates_of(subject2feats, question)

    def add_candidates_to_corpus(self, corpus: Corpus):
        num_answers = .0
        num_2hop = .0
        num_cover = {'all': .0, '2hop': .0}
        for i, sample in enumerate(corpus):
            question = sample['question']
            gold_answer = sample['gold_tuple']
            gold_entities = sample['gold_entitys']
            subject_linked = sample['subject_linked']
            candidate_answers = self._candidates_of(subject_linked, question)
            num_answers += len(candidate_answers)
            sample['candidate_answer'] = candidate_answers
            ever_cover = False
            for answer in candidate_answers:
                if set(answer).issuperset(gold_answer):
                    ever_cover = True
                    print('* Question: ({}){}\n*\tAnswer: {}'.format(
                        i, question, answer))
                    break
            if ever_cover:
                num_cover['all'] += 1
                if len(gold_answer) <= 3 and len(gold_entities) == 1:
                    num_cover['2hop'] += 1
            if len(gold_answer) <= 3 and len(gold_entities) == 1:
                num_2hop += 1
            # if i >  500 and i % 500 == 0:
            #     print(">>> Caching query dict... <<< ")
            #     self.cache_similarity_query()
            #     self.cache_relation_paths()
        print("* For {}".format(corpus.name))
        print('* Cover ratio in all questions: {:.2f}'.format(
            num_cover['all'] / len(corpus)))
        print('* Cover ratio in single-entity questions: {:.2f}'.format(
            num_cover['2hop'] / num_2hop))
        print('* Averaged candidates per question: {:.2f}'.format(num_answers /
                                                                  len(corpus)))
        return corpus

    def cache_similarity_query(self):
        with open(self._similarity_dict_path, 'wb') as f:
            pickle.dump(self._seqPair2similarity, f)

    def cache_relation_paths(self):
        with open(self._relation_paths_dict_path, 'wb') as f:
            pickle.dump(self._entity2relations, f)