def sigmaHat(self, t, ColeColefunc=ColeCole): etc = np.c_[self.curModel.eta, self.curModel.tau, self.curModel.c] unqEtc, uETCind, invInd = uniqueRows(etc) sigmaHat = [] for (ev, tv, cv) in unqEtc: if ev == 0.: sigmaHat.append(0.) else: key = '%.5e_%.5f_%.5e_%.5f' % (t, ev, tv, cv) if self.sigmaHatDict.has_key(key): val = self.sigmaHatDict[key] else: if t == 0: # val = transFilt(F,1e-6) val = ev / (tv * (1. - ev)) else: F = lambda frq: (1j * 2 * np.pi * frq) * ColeColefunc( frq, sigmaInf=1., eta=ev, tau=tv, c=cv) val = transFilt(F, t) self.sigmaHatDict[key] = val sigmaHat.append(val) sigmaHat = self.curModel.sigmaInf * np.array(sigmaHat)[invInd] return sigmaHat
def sigmaHat(self, t, ColeColefunc=ColeCole): etc = np.c_[self.curModel.eta, self.curModel.tau, self.curModel.c] unqEtc, uETCind, invInd = uniqueRows(etc) sigmaHat = [] for (ev, tv, cv) in unqEtc: if ev == 0.: sigmaHat.append(0.) else: key = '%.5e_%.5f_%.5e_%.5f' %(t, ev, tv, cv) if self.sigmaHatDict.has_key(key): val = self.sigmaHatDict[key] else: if t == 0: # val = transFilt(F,1e-6) val = ev/(tv*(1.-ev)) else: F = lambda frq: (1j*2*np.pi*frq)*ColeColefunc(frq, sigmaInf=1., eta=ev, tau=tv, c=cv) val = transFilt(F,t) self.sigmaHatDict[key] = val sigmaHat.append(val) sigmaHat = self.curModel.sigmaInf*np.array(sigmaHat)[invInd] return sigmaHat
def CCTF(t, sigmaInf, eta, tau, c): F = lambda frq: (1j * 2 * np.pi * frq) * ColeCole( frq, sigmaInf=sigmaInf, eta=eta, tau=tau, c=c) return transFilt(F, t)
def CCTF(t, sigmaInf, eta, tau, c): F = lambda frq: (1j*2*np.pi*frq)*ColeCole(frq, sigmaInf=sigmaInf, eta=eta, tau=tau, c=c) return transFilt(F,t)