def test_init_of_number_of_qubits(self): s = StabilizerState(1) z0 = StabilizerState([[0, 1]]) self.assertEqual(s.num_qubits, 1) self.assertTrue(s == z0) s = StabilizerState(2) self.assertEqual(s.num_qubits, 2) self.assertTrue(s == z0.tensor_product(z0))
class stabilizerEngine(quantumEngine): """ Basic quantum engine which uses stabilizer formalism. Thus only Clifford operations can be performed Attributes: maxQubits: maximum number of qubits this engine will support. """ def __init__(self, node, num, maxQubits=10): """ Initialize the simple engine. If no number is given for maxQubits, the assumption will be 10. """ super().__init__(node=node, num=num, maxQubits=maxQubits) self.qubitReg = StabilizerState() @property def activeQubits(self): return self.qubitReg.num_qubits def add_fresh_qubit(self): """ Add a new qubit initialized in the \|0\> state. """ # Check if we are still allowed to add qubits if self.activeQubits >= self.maxQubits: raise noQubitError("No more qubits available in register.") num = self.activeQubits # Prepare a clean qubit state in |0> self.qubitReg.add_qubit() return num def add_qubit(self, newQubit): """ Add new qubit in the state described by the array containing the generators of the stabilizer group. This should be in the form required by the StabilizerState class. """ # Create the qubit try: qubit = StabilizerState(newQubit) except Exception: raise ValueError( "'newQubits' was not in the correct form to be given as an argument to StabilizerState" ) num = self.activeQubits self.qubitReg = self.qubitReg.tensor_product(qubit) return num def remove_qubit(self, qubitNum): """ Removes the qubit with the desired number qubitNum """ if (qubitNum + 1) > self.activeQubits: raise quantumError("No such qubit to remove") self.measure_qubit(qubitNum) def get_register_RI(self): """ Retrieves the entire register in real and imaginary part. Twisted only likes to send real valued lists, not complex ones. Since this is in stabilizer formalism the real part will be the boolean matrix describing the generators and the imaginary part will be None """ Re = self.qubitReg.to_array().tolist() Im = None return Re, Im def apply_H(self, qubitNum): """ Applies a Hadamard gate to the qubits with number qubitNum. """ self.qubitReg.apply_H(qubitNum) def apply_K(self, qubitNum): """ Applies a K gate to the qubits with number qubitNum. Maps computational basis to Y eigenbasis. """ self.qubitReg.apply_K(qubitNum) def apply_X(self, qubitNum): """ Applies a X gate to the qubits with number qubitNum. """ self.qubitReg.apply_X(qubitNum) def apply_Z(self, qubitNum): """ Applies a Z gate to the qubits with number qubitNum. """ self.qubitReg.apply_Z(qubitNum) def apply_Y(self, qubitNum): """ Applies a Y gate to the qubits with number qubitNum. """ self.qubitReg.apply_Y(qubitNum) def apply_T(self, qubitNum): """ Applies a T gate to the qubits with number qubitNum. """ raise AttributeError("Cannot apply T gate in stabilizer formalism") def apply_rotation(self, qubitNum, n, a): """ Applies a rotation around the axis n with the angle a to qubit with number qubitNum. If n is zero a ValueError is raised. :param qubitNum: int Qubit number :param n: tuple of floats A tuple of three numbers specifying the rotation axis, e.g n=(1,0,0) :param a: float The rotation angle in radians. """ raise AttributeError( "Cannot apply arbitrary rotation gate in stabilizer formalism") def apply_CNOT(self, qubitNum1, qubitNum2): """ Applies the CNOT to the qubit with the numbers qubitNum1 and qubitNum2. """ self.qubitReg.apply_CNOT(qubitNum1, qubitNum2) def apply_CPHASE(self, qubitNum1, qubitNum2): """ Applies the CPHASE to the qubit with the numbers qubitNum1 and qubitNum2. """ self.qubitReg.apply_CZ(qubitNum1, qubitNum2) def apply_onequbit_gate(self, gate, qubitNum): """ Applies a unitary gate to the specified qubit. Arguments: gate The project Q gate to be applied qubitNum the number of the qubit this gate is applied to """ raise AttributeError( "Cannot apply arbitrary one qubit gate in stabilizer formalism") def apply_twoqubit_gate(self, gate, qubit1, qubit2): """ Applies a unitary gate to the two specified qubits. Arguments: gate The project Q gate to be applied qubit1 the first qubit qubit2 the second qubit """ raise AttributeError( "Cannot apply arbitrary two qubit gate in stabilizer formalism") def measure_qubit_inplace(self, qubitNum): """ Measures the desired qubit in the standard basis. This returns the classical outcome. The quantum register is in the post-measurment state corresponding to the obtained outcome. Arguments: qubitNum qubit to be measured """ # Check we have such a qubit... if (qubitNum + 1) > self.activeQubits: raise quantumError("No such qubit to be measured.") outcome = self.qubitReg.measure(qubitNum, inplace=True) # return measurement outcome return outcome def measure_qubit(self, qubitNum): """ Measures the desired qubit in the standard basis. This returns the classical outcome and deletes the qubit. Arguments: qubitNum qubit to be measured """ outcome = self.qubitReg.measure(qubitNum, inplace=False) return outcome def replace_qubit(self, qubitNum, state): """ Replaces the qubit at position qubitNum with the one given by state. """ raise NotImplementedError( "Currently you cannot replace a qubit using stabilizer formalism") def absorb(self, other): """ Absorb the qubits from the other engine into this one. This is done by tensoring the state at the end. """ # Check whether there is space newNum = self.activeQubits + other.activeQubits if newNum > self.maxQubits: raise quantumError( "Cannot merge: qubits exceed the maximum available.\n") self.qubitReg = self.qubitReg.tensor_product(other.qubitReg) def absorb_parts(self, R, I, activeQ): """ Absorb the qubits, given in pieces Arguments: R The array describing the stabilizer state (from StabilizerState.to_array) I Unused activeQ active number of qubits """ # Check whether there is space newNum = self.activeQubits + activeQ if newNum > self.maxQubits: raise quantumError( "Cannot merge: qubits exceed the maximum available.\n") self.qubitReg = self.qubitReg.tensor_product(StabilizerState(R))