def threaded_simulate (self, thread): half = int (POP_SIZE / 2) start = 0 if thread == 1 else half end = start + half population = self.population [start:end] for c in population: c.fitness = simulate_model (c.genotype) self.population[start:end] = population
def threaded_simulate(self, thread): half = int(POP_SIZE / 2) start = 0 if thread == 1 else half end = start + half population = self.population[start:end] for c in population: c.fitness = simulate_model(c.genotype) self.population[start:end] = population
def unthreaded_simulate (self): #print "inside unthreaded_simulate" # Run population through simulation. for c in self.population: c.set_fitness (simulate_model (c.genotype,self.t_1,self.t_2)) print "simulate %s, %s" % (str(self.t_1),str(self.t_2)) for c in sorted(self.population, key= lambda c: c.fitness): print "{: <12} {}".format (c.genotype, c.fitness) print ""
def unthreaded_simulate(self): #print "inside unthreaded_simulate" # Run population through simulation. for c in self.population: c.set_fitness(simulate_model(c.genotype, self.t_1, self.t_2)) print "simulate %s, %s" % (str(self.t_1), str(self.t_2)) for c in sorted(self.population, key=lambda c: c.fitness): print "{: <12} {}".format(c.genotype, c.fitness) print ""
def run (self): starti = self.starti endi = self.endi num_iter = len (self.population) / 2 for i in range (starti, endi): c = self.population [i] fitness = 0 try: fitness = simulate_model (c.genotype,self.t_1,self.t_2) except: pass if fitness >= 1: self.population [i].fitness = fitness else: self.population [i].fitness = 1
def run(self): starti = self.starti endi = self.endi num_iter = len(self.population) / 2 for i in range(starti, endi): c = self.population[i] fitness = 0 try: fitness = simulate_model(c.genotype, self.t_1, self.t_2) except: pass if fitness >= 1: self.population[i].fitness = fitness else: self.population[i].fitness = 1
def run (self): #print "inside MP run" while True: c = self.task_queue.get() fitness = 0 if c is None: break try: fitness = simulate_model (c[0].genotype,c[1],c[2]) except: pass if fitness >= 1: c[0].fitness = fitness else: c[0].fitness = 1 self.result_queue.put (c[0])
def run(self): #print "inside MP run" while True: c = self.task_queue.get() fitness = 0 if c is None: break try: fitness = simulate_model(c[0].genotype, c[1], c[2]) except: pass if fitness >= 1: c[0].fitness = fitness else: c[0].fitness = 1 self.result_queue.put(c[0])
#!/usr/bin/env python import simulate import fit_data import model_data import pandas as pd import tools model = simulate.load_model('volume_reference.txt') #df = model_data.get_model_parameters_as_dataframe(model) #df.to_csv('used_model_parameters.csv') #set paras #param_list = ['V_b', 'V_os', '[c_e]', '[c_i]', 'k_deg', 'k_nutrient', 'modulus_adjustment', 'phi', 'pi_t0', 'pi_tc_0'] #df = pd.read_csv('used_model_parameters.csv') #model = model_data.set_model_parameters_from_dataframe(model, df, param_list, row=1) #run simu simulation_result = simulate.simulate_model(model, end_time=7200) simulate.plot((simulation_result, ), legend=True)