示例#1
0
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])
    
    world = client.load_world('Town02')
    weather = carla.WeatherParameters(
        cloudiness=30.0,
        precipitation=30.0,
        sun_altitude_angle=50.0
    )
    set_weather(world, weather)
    
    blueprint = world.get_blueprint_library()
    world_map = world.get_map()
    
    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.bmw.grandtourer')
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    
    spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)
    origin_map.resize((2000,2000)).show()
    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)
    
    destination = get_random_destination(spawn_points)
    plan_map = replan(agent, destination, origin_map)
    
    """
    while True:
        if close2dest(vehicle, destination):
            destination = get_random_destination(spawn_points)
            plan_map = replan(agent, destination, origin_map)
            
        if vehicle.is_at_traffic_light():
            traffic_light = vehicle.get_traffic_light()
            if traffic_light.get_state() == carla.TrafficLightState.Red:
                traffic_light.set_state(carla.TrafficLightState.Green)
                
        control = agent.run_step()
        control.manual_gear_shift = False
        vehicle.apply_control(control)
        
        nav = get_nav(vehicle, plan_map)
        cv2.imshow('Nav', nav)
        cv2.waitKey(16)
    """
    cv2.destroyAllWindows()
    vehicle.destroy()
示例#2
0
def main():
    global global_nav, global_vel, start_control, global_plan_map, global_vehicle, global_cost_map, global_transform, max_steer_angle, global_a, draw_cost_map, state0
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])
    
    world = client.load_world('Town01')

    weather = carla.WeatherParameters(
        cloudiness=random.randint(0,10),
        precipitation=0,
        sun_altitude_angle=random.randint(50,90)
    )
    
    set_weather(world, weather)
    
    blueprint = world.get_blueprint_library()
    world_map = world.get_map()
    
    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_vehicle = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera':{
            'transform':carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback':image_callback,
            },
        'camera:view':{
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':carla.Transform(carla.Location(x=-3.0, y=0.0, z=6.0), carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':view_image_callback,
            },
        'lidar':{
            'transform':carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback':lidar_callback,
            },
        }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()
    
    #spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)
    
    # prepare map
    destination = carla.Transform()
    destination.location = world.get_random_location_from_navigation()
    #destination = get_random_destination(spawn_points)
    global_plan_map = replan(agent, destination, copy.deepcopy(origin_map))

    # start to plan
    plan_thread = threading.Thread(target = make_plan, args=())
    visualization_thread = threading.Thread(target = show_traj, args=())

    while True:
        if (global_img is not None) and (global_nav is not None) and (global_pcd is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)
    
    # wait for the first plan result
    while not start_control:
        time.sleep(0.001)
    
    #visualization_thread.start()
    # start to control
    print('Start to control')
    
    ctrller = CapacController(world, vehicle, 30)
    while True:
        # change destination
        if close2dest(vehicle, destination):
            #destination = get_random_destination(spawn_points)
            print('get destination !', time.time())
            destination = carla.Transform()
            destination.location = world.get_random_location_from_navigation()
            global_plan_map = replan(agent, destination, copy.deepcopy(origin_map)) 

        v = global_vehicle.get_velocity()
        a = global_vehicle.get_acceleration()
        global_vel = np.sqrt(v.x**2+v.y**2+v.z**2)
        global_a = np.sqrt(a.x**2+a.y**2+a.z**2)
        #steer_angle = global_vehicle.get_control().steer*max_steer_angle
        #w = global_vel*np.tan(steer_angle)/2.405
        
        control_time = time.time()
        dt = control_time - global_trajectory['time']
        index = int((dt/args.max_t)//args.dt)
        if index > 0.99/args.dt:
            continue
        
        control = ctrller.run_step(global_trajectory, index, state0)
        vehicle.apply_control(control)

        curve = None#show_traj(True)
        visualize(global_view_img, draw_cost_map, global_nav, curve)
        
        #time.sleep(1/60.)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
def main():
    global global_nav, global_vel, start_control, global_plan_map, global_vehicle, global_transform, max_steer_angle, global_a, state0, global_collision
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_vehicle = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)

    spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)

    # prepare map
    destination = carla.Transform()
    destination.location = world.get_random_location_from_navigation()
    global_plan_map, destination = replan(agent, destination,
                                          copy.deepcopy(origin_map),
                                          spawn_points)

    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=6.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    time.sleep(0.5)
    # start to plan
    plan_thread = threading.Thread(target=make_plan, args=())
    # visualization_thread = threading.Thread(target = show_traj, args=())

    while True:
        if (global_img is not None) and (global_nav is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    # wait for the first plan result
    while not start_control:
        time.sleep(0.001)

    # visualization_thread.start()
    # start to control
    print('Start to control')

    ctrller = CapacController(world, vehicle, 30)
    while True:
        # change destination
        if close2dest(vehicle, destination):
            #destination = get_random_destination(spawn_points)
            print('get destination !', time.time())
            destination = carla.Transform()
            destination.location = world.get_random_location_from_navigation()
            # global_plan_map = replan(agent, destination, copy.deepcopy(origin_map))
            global_plan_map, destination = replan(agent, destination,
                                                  copy.deepcopy(origin_map),
                                                  spawn_points)

        if global_collision:
            global_collision = False
            start_point = random.choice(spawn_points)
            vehicle.set_transform(start_point)
            global_plan_map, destination = replan(agent, destination,
                                                  copy.deepcopy(origin_map),
                                                  spawn_points)

            start_waypoint = agent._map.get_waypoint(
                agent._vehicle.get_location())
            end_waypoint = agent._map.get_waypoint(destination.location)

            route_trace = agent._trace_route(start_waypoint, end_waypoint)
            start_point.rotation = route_trace[0][0].transform.rotation
            vehicle.set_transform(start_point)

        v = global_vehicle.get_velocity()
        a = global_vehicle.get_acceleration()
        global_vel = np.sqrt(v.x**2 + v.y**2 + v.z**2)
        global_a = np.sqrt(a.x**2 + a.y**2 + a.z**2)
        #steer_angle = global_vehicle.get_control().steer*max_steer_angle
        #w = global_vel*np.tan(steer_angle)/2.405

        control_time = time.time()
        dt = control_time - global_trajectory['time']
        index = int((dt / args.max_t) // args.dt) + 2
        if index > 0.99 / args.dt:
            continue
        """
        transform = vehicle.get_transform()
        
        dx, dy, dyaw = get_transform(transform, global_transform)
        dyaw = -dyaw
        
        _x = global_trajectory['x'][index] - dx
        _y = global_trajectory['y'][index] - dy
        x = _x*np.cos(dyaw) + _y*np.sin(dyaw)
        y = _y*np.cos(dyaw) - _x*np.sin(dyaw)
        
        _vx = global_trajectory['vx'][index]
        _vy = global_trajectory['vy'][index]
        vx = _vx*np.cos(dyaw) + _vy*np.sin(dyaw)
        vy = _vy*np.cos(dyaw) - _vx*np.sin(dyaw)
        
        _ax = global_trajectory['ax'][index]
        _ay = global_trajectory['ay'][index]
        ax = _ax*np.cos(dyaw) + _ay*np.sin(dyaw)
        ay = _ay*np.cos(dyaw) - _ax*np.sin(dyaw)
        """
        #control = get_control(x, y, vx, vy, ax, ay)
        control = ctrller.run_step(global_trajectory, index, state0)
        vehicle.apply_control(control)

        # x = global_trajectory['x']
        # y = global_trajectory['y']
        # plt.cla()
        # plt.plot(x, y)
        # plt.xlim(-1, 29)
        # plt.ylim(-15, 15)
        # plt.show()
        """
        dyaw = np.deg2rad(global_transform.rotation.yaw)
        x = global_trajectory['x'][index]*np.cos(dyaw) + global_trajectory['y'][index]*np.sin(dyaw)
        y = global_trajectory['y'][index]*np.cos(dyaw) - global_trajectory['x'][index]*np.sin(dyaw)
        """
        #localtion = carla.Location(x = global_transform.location.x+x, y=global_transform.location.y+y, z=2.0)
        #world.debug.draw_point(localtion, size=0.3, color=carla.Color(255,0,0), life_time=10.0)

        #print(global_vel*np.tan(control.steer)/w)

        curve = None  #show_traj(True)
        visualize(global_view_img, global_nav, curve)

        #time.sleep(1/60.)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#4
0
def main():
    global global_nav, global_vel
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])
    
    world = client.load_world('Town01')

    weather = carla.WeatherParameters(
        cloudiness=random.randint(0,10),
        precipitation=0,
        sun_altitude_angle=random.randint(50,90)
    )
    
    set_weather(world, weather)
    
    blueprint = world.get_blueprint_library()
    world_map = world.get_map()
    
    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    
    sensor_dict = {
        'camera':{
            'transform':carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback':image_callback,
            },
        'lidar':{
            'transform':carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback':lidar_callback,
            },
        }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()
    time.sleep(0.3)
    
    spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)
    
    destination = get_random_destination(spawn_points)
    plan_map = replan(agent, destination, copy.deepcopy(origin_map))
    
    inverse_perspective_mapping = InversePerspectiveMapping(param, sensor_master)
    time.sleep(0.3)
    while True:
        if close2dest(vehicle, destination):
            destination = get_random_destination(spawn_points)
            plan_map = replan(agent, destination, copy.deepcopy(origin_map)) 
            
        v = vehicle.get_velocity()
        global_vel = np.sqrt(v.x**2+v.y**2+v.z**2)
        
        global_nav = get_nav(vehicle, plan_map)
        result = get_cGAN_result()
        
        img = copy.deepcopy(global_img)
        mask = np.where(result > 200)
        img[mask[0],mask[1]] = (255, 0, 0, 255)
        
        ipm_image = inverse_perspective_mapping.getIPM(result)
        cost_map = get_cost_map(ipm_image, global_pcd)
        #plan_cost_map = draw_traj(cost_map)
        
        plan_cost_map, trajectory = get_traj(cost_map, 0.7, show=True)
        control = get_control(trajectory)
        vehicle.apply_control(control)
        
        visualize(img, plan_cost_map, global_nav)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#5
0
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    global_dict['max_steer_angle'] = np.deg2rad(
        physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=9.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    env = CARLAEnv(world, vehicle, global_dict, args, trajectory_model)

    # start to control
    print('Start to control')
    state = env.reset()
    while True:
        state = env.reset()

    sm.close_all()
    vehicle.destroy()
示例#6
0
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode((args.width, args.height),
                                          pygame.HWSURFACE | pygame.DOUBLEBUF)

        hud = HUD(args.width, args.height)
        _world = client.load_world('Town01')
        world_map = _world.get_map()
        world = World(_world, hud)

        weather = carla.WeatherParameters(cloudiness=random.randint(0, 80),
                                          precipitation=0,
                                          sun_altitude_angle=random.randint(
                                              40, 90))
        set_weather(_world, weather)

        controller = DualControl(world)

        vehicle = world.player
        agent = BasicAgent(vehicle, target_speed=31)

        spawn_points = world_map.get_spawn_points()
        waypoint_tuple_list = world_map.get_topology()
        origin_map = get_map(waypoint_tuple_list)

        destination = get_random_destination(spawn_points)
        plan_map = replan(agent, destination, copy.deepcopy(origin_map))
        #plan_map.resize((1000, 1000)).show()
        clock = pygame.time.Clock()
示例#7
0
def main():
    global global_nav, global_control, global_pos, global_vel
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    #world = client.get_world()
    world = client.load_world('Town02')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          70, 90))

    #world.set_weather(carla.WeatherParameters.ClearNoon)
    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world,
                          blueprint,
                          vehicle_type='vehicle.bmw.grandtourer')
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)

    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=1.5, y=0.0, z=2.0)),
            'callback': image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=1.5, y=0.0, z=2.0)),
            'callback': lidar_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()
    time.sleep(0.3)

    spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)

    destination = get_random_destination(spawn_points)
    plan_map = replan(agent, destination, copy.deepcopy(origin_map))

    FPS = [str(time.time())]
    for cnt in range(args.num):
        if close2dest(vehicle, destination):
            destination = get_random_destination(spawn_points)
            plan_map = replan(agent, destination, copy.deepcopy(origin_map))

        if vehicle.is_at_traffic_light():
            traffic_light = vehicle.get_traffic_light()
            if traffic_light.get_state() == carla.TrafficLightState.Red:
                traffic_light.set_state(carla.TrafficLightState.Green)

        #control = agent.run_step()
        #control.manual_gear_shift = False
        #control = None
        #vehicle.apply_control(control)
        #nav = get_nav(vehicle, plan_map)
        global_pos = vehicle.get_transform()
        global_vel = vehicle.get_velocity()

        start_waypoint = agent._map.get_waypoint(agent._vehicle.get_location())
        end_waypoint = agent._map.get_waypoint(destination.location)

        route_trace = agent._trace_route(start_waypoint, end_waypoint)
        x = []
        y = []
        traj_pose_list = []
        for i in range(len(route_trace) - 1):
            waypoint1 = route_trace[i][0].transform.location
            waypoint2 = route_trace[i + 1][0].transform.location
            dist = waypoint1.distance(waypoint2)
            x.append(waypoint1.x)
            y.append(waypoint1.y)
            traj_pose_list.append((0, route_trace[i][0].transform))
        plt.plot([global_pos.location.x, x[0]], [global_pos.location.y, y[0]],
                 color='r')
        plt.plot(x[:10], y[:10], color='b')
        plt.show()

        empty_image = collect_perspective.getPM(traj_pose_list, global_pos,
                                                global_img)
        break

        #cv2.imshow('Nav', nav)
        #cv2.imshow('Vision', global_img)
        #cv2.waitKey(10)
        index = str(time.time())

        if cnt % 100 == 0:
            FPS.append(index)
            print(round(1 / ((float(FPS[-1]) - float(FPS[-2])) / 100), 1))

    cv2.destroyAllWindows()
    vehicle.destroy()
    sm.close_all()
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    global_dict['max_steer_angle'] = np.deg2rad(
        physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=6.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    #spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=args.max_speed)

    # prepare map
    destination = carla.Transform()
    destination.location = world.get_random_location_from_navigation()
    #destination = get_random_destination(spawn_points)
    global_dict['plan_map'] = replan(agent, destination,
                                     copy.deepcopy(origin_map))

    # start to plan
    plan_thread = threading.Thread(target=make_plan, args=())
    #visualization_thread = threading.Thread(target = show_traj, args=())

    while True:
        if (global_dict['img']
                is not None) and (global_dict['nav']
                                  is not None) and (global_dict['pcd']
                                                    is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    # wait for the first plan result
    while not global_dict['start_control']:
        time.sleep(0.001)

    #visualization_thread.start()
    # start to control
    print('Start to control')

    ctrller = CapacController(world, vehicle, 30)

    env = CARLAEnv(world, vehicle)
    env.reset()
    #env.step()

    while True:
        # change destination
        if close2dest(vehicle, destination):
            #destination = get_random_destination(spawn_points)
            print('get destination !', time.time())
            destination = carla.Transform()
            destination.location = world.get_random_location_from_navigation()
            global_dict['plan_map'] = replan(agent, destination,
                                             copy.deepcopy(origin_map))

        v = global_dict['vehicle'].get_velocity()
        a = global_dict['vehicle'].get_acceleration()
        global_dict['vel'] = np.sqrt(v.x**2 + v.y**2 + v.z**2)
        global_dict['a'] = np.sqrt(a.x**2 + a.y**2 + a.z**2)
        #steer_angle = global_dict['vehicle'].get_control().steer*global_dict['max_steer_angle']
        #w = global_vel*np.tan(steer_angle)/2.405

        control_time = time.time()
        dt = control_time - global_dict['trajectory']['time']
        index = int((dt / args.max_t) // args.dt) + 5
        if index > 0.99 / args.dt:
            continue
        """
        transform = vehicle.get_transform()
        
        dx, dy, dyaw = get_diff_tf(transform, global_dict['transform'])
        dyaw = -dyaw
        
        _x = global_dict['trajectory']['x'][index] - dx
        _y = global_dict['trajectory']['y'][index] - dy
        x = _x*np.cos(dyaw) + _y*np.sin(dyaw)
        y = _y*np.cos(dyaw) - _x*np.sin(dyaw)
        
        _vx = global_dict['trajectory']['vx'][index]
        _vy = global_dict['trajectory']['vy'][index]
        vx = _vx*np.cos(dyaw) + _vy*np.sin(dyaw)
        vy = _vy*np.cos(dyaw) - _vx*np.sin(dyaw)
        
        _ax = global_dict['trajectory']['ax'][index]
        _ay = global_dict['trajectory']['ay'][index]
        ax = _ax*np.cos(dyaw) + _ay*np.sin(dyaw)
        ay = _ay*np.cos(dyaw) - _ax*np.sin(dyaw)
        """
        control = ctrller.run_step(global_dict['trajectory'], index,
                                   global_dict['state0'])
        env.step(control)
        #vehicle.apply_control(control)
        """
        dyaw = np.deg2rad(global_dict['transform'].rotation.yaw)
        x = global_dict['trajectory']['x'][index]*np.cos(dyaw) + global_dict['trajectory']['y'][index]*np.sin(dyaw)
        y = global_dict['trajectory']['y'][index]*np.cos(dyaw) - global_dict['trajectory']['x'][index]*np.sin(dyaw)
        """
        curve = None  #show_traj(True)
        #visualize(global_dict['view_img'], global_dict['draw_cost_map'], global_dict['nav'], args, curve)
        visualize(global_dict, global_dict['draw_cost_map'], args, curve)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#9
0
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    global_dict['max_steer_angle'] = np.deg2rad(
        physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=9.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    ctrller = CapacController(world, vehicle, 30)
    agent = BasicAgent(vehicle, target_speed=30)
    world_map = world.get_map()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)
    spawn_points = world_map.get_spawn_points()
    route_trace = None

    start_point = random.choice(spawn_points)
    destination = random.choice(spawn_points)
    vehicle.set_transform(start_point)
    global_dict['plan_map'] = replan(agent, destination,
                                     copy.deepcopy(origin_map))
    global_dict['collision'] = False
    start_waypoint = agent._map.get_waypoint(agent._vehicle.get_location())
    end_waypoint = agent._map.get_waypoint(destination.location)
    route_trace = agent._trace_route(start_waypoint, end_waypoint)
    start_point.rotation = route_trace[0][0].transform.rotation
    vehicle.set_transform(start_point)

    plan_thread = threading.Thread(target=make_plan, args=())

    while True:
        if (global_dict['img'] is not None) and (global_dict['nav']
                                                 is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    while global_dict['trajectory'] is None:
        time.sleep(0.001)

    while True:
        done = False
        trajectory = global_dict['trajectory']
        for i in range(20):
            if global_dict['collision']:
                done = True
                print('Done !')
                break
            if close2dest(vehicle, destination):
                done = True
                print('Success !')
                break

            control_time = time.time()
            dt = control_time - trajectory['time']
            index = int((dt / args.max_t) // args.dt) + 5
            if index > 0.99 // args.dt - 10:
                continue

            control = ctrller.run_step(trajectory, index,
                                       global_dict['state0'])
            vehicle.apply_control(control)

            cv2.imshow('Visualization', global_dict['view_img'])
            cv2.imshow('Costmap', global_dict['draw_cost_map'])
            cv2.waitKey(1)

        if done or global_dict['collision']:
            start_point = random.choice(spawn_points)
            destination = random.choice(spawn_points)
            vehicle.set_transform(start_point)
            global_dict['plan_map'] = replan(agent, destination,
                                             copy.deepcopy(origin_map))
            global_dict['collision'] = False
            start_waypoint = agent._map.get_waypoint(
                agent._vehicle.get_location())
            end_waypoint = agent._map.get_waypoint(destination.location)
            route_trace = agent._trace_route(start_waypoint, end_waypoint)
            start_point.rotation = route_trace[0][0].transform.rotation
            vehicle.set_transform(start_point)
            done = False

    sm.close_all()
    vehicle.destroy()
def main():
    global global_nav, global_vel, start_control, global_plan_map, global_vehicle, global_cost_map, global_transform, max_steer_angle, global_a, draw_cost_map
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_vehicle = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)

    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    #spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)

    # prepare map
    destination = carla.Transform()
    destination.location = world.get_random_location_from_navigation()
    #destination = get_random_destination(spawn_points)
    global_plan_map = replan(agent, destination, copy.deepcopy(origin_map))

    # start to plan
    plan_thread = threading.Thread(target=make_plan, args=())
    while True:
        if (global_img is not None) and (global_nav
                                         is not None) and (global_pcd
                                                           is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    # wait for the first plan result
    while not start_control:
        time.sleep(0.001)

    # start to control
    print('Start to control')
    avg_dt = 1.0
    distance = 0.
    last_location = vehicle.get_location()
    while True:
        # change destination
        if close2dest(vehicle, destination):
            #destination = get_random_destination(spawn_points)
            destination = carla.Transform()
            destination.location = world.get_random_location_from_navigation()
            global_plan_map = replan(agent, destination,
                                     copy.deepcopy(origin_map))

        v = global_vehicle.get_velocity()
        a = global_vehicle.get_acceleration()
        global_vel = np.sqrt(v.x**2 + v.y**2 + v.z**2)
        global_a = np.sqrt(a.x**2 + a.y**2 + a.z**2)
        #steer_angle = global_vehicle.get_control().steer*max_steer_angle
        #w = global_vel*np.tan(steer_angle)/2.405

        control_time = time.time()
        dt = control_time - global_trajectory['time']
        avg_dt = 0.99 * avg_dt + 0.01 * dt
        #print(round(avg_dt, 3))
        index = int((dt / args.max_t) // args.dt)
        if index > 0.9 / args.dt:
            continue

        location = vehicle.get_location()
        distance += location.distance(last_location)
        last_location = location
        #print(round(distance, 1))

        transform = vehicle.get_transform()
        dx, dy, dyaw = get_transform(transform, global_transform)
        dyaw = -dyaw

        _x = global_trajectory['x'][index] - dx
        _y = global_trajectory['y'][index] - dy
        x = _x * np.cos(dyaw) + _y * np.sin(dyaw)
        y = _y * np.cos(dyaw) - _x * np.sin(dyaw)

        _vx = global_trajectory['vx'][index]
        _vy = global_trajectory['vy'][index]
        vx = _vx * np.cos(dyaw) + _vy * np.sin(dyaw)
        vy = _vy * np.cos(dyaw) - _vx * np.sin(dyaw)

        _ax = global_trajectory['ax'][index]
        _ay = global_trajectory['ay'][index]
        ax = _ax * np.cos(dyaw) + _ay * np.sin(dyaw)
        ay = _ay * np.cos(dyaw) - _ax * np.sin(dyaw)

        control = get_new_control(x, y, vx, vy, ax, ay)
        vehicle.apply_control(control)

        #print(global_vel*np.tan(control.steer)/w)
        #visualize(global_img, draw_cost_map, global_nav)
        visualize(global_img)

        #time.sleep(1/60.)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#11
0
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.get_world()
    weather = carla.WeatherParameters(cloudiness=30.0,
                                      precipitation=30.0,
                                      sun_altitude_angle=50.0)
    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world,
                          blueprint,
                          vehicle_type='vehicle.bmw.grandtourer')
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)

    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=1.5, y=0.0, z=2.0)),
            'callback': image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=1.5, y=0.0, z=2.0)),
            'callback': lidar_callback,
        },
        'gnss': {
            'transform': carla.Transform(carla.Location(x=0.0, y=0.0, z=0.0)),
            'callback': gnss_callback,
        },
        'imu': {
            'transform': carla.Transform(carla.Location(x=0.0, y=0.0, z=0.0)),
            'callback': imu_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()
    time.sleep(0.3)

    vehicle.set_autopilot(True)

    try:
        while True:
            if vehicle.is_at_traffic_light():
                traffic_light = vehicle.get_traffic_light()
                if traffic_light.get_state() == carla.TrafficLightState.Red:
                    traffic_light.set_state(carla.TrafficLightState.Green)
            cv2.imshow('Raw image', global_img)
            """
            vehicle.apply_control(carla.VehicleControl(
                throttle=0.3, 
                steer = 0.0, 
                reverse=False,
                manual_gear_shift=True,
                gear=1,
                brake=0.0,
                hand_brake=False
            ))
            """
            #vehicle.get_angular_velocity().z
            #vehicle.get_velocity().x

            cv2.waitKey(16)
            #break

        cv2.destroyAllWindows()
    finally:
        sm.close_all()
        vehicle.destroy()
示例#12
0
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    global_dict['max_steer_angle'] = np.deg2rad(
        physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=9.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    model = TD3(buffer_size=3e3, noise_decay_steps=5e3, batch_size=10)

    env = CARLAEnv(world, vehicle, global_dict, args, trajectory_model)
    state = env.reset()

    plan_thread = threading.Thread(target=make_plan, args=())

    while True:
        if (global_dict['img']
                is not None) and (global_dict['nav']
                                  is not None) and (global_dict['pcd']
                                                    is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    # start to control
    print('Start to control')

    episode_timesteps = 0
    episode_reward = 0
    max_steps = 1e9
    total_steps = 0
    max_episode_steps = 1000
    learning_starts = 50
    episode_num = 0

    while total_steps < max_steps:
        total_steps += 1
        episode_timesteps = 0
        episode_reward = 0

        state_queue = []
        state = env.reset()
        for _ in range(10):
            state_queue.append(state)
        state = torch.stack(state_queue)
        plan_time = global_dict['plan_time']

        for step in range(max_episode_steps):
            global_dict['state0'] = cu.getActorState('odom', plan_time,
                                                     global_dict['vehicle'])
            global_dict['state0'].x = global_dict['transform'].location.x
            global_dict['state0'].y = global_dict['transform'].location.y
            global_dict['state0'].z = global_dict['transform'].location.z
            global_dict['state0'].theta = np.deg2rad(
                global_dict['transform'].rotation.yaw)

            action = model.policy_net.get_action(state)
            print('org:', action)
            action = model.noise.get_action(action, total_steps)
            print('after', action)
            next_state, reward, done, _ = env.step(action, plan_time)
            plan_time = global_dict['plan_time']
            model.replay_buffer.push(copy.deepcopy(state), action, reward,
                                     copy.deepcopy(next_state), done)

            state = next_state
            episode_reward += reward
            total_steps += 1
            episode_timesteps += 1

            if done or episode_timesteps == max_episode_steps:
                if len(model.replay_buffer) > learning_starts:
                    for i in range(episode_timesteps):
                        model.train_step(i)

                episode_num += 1
                if episode_num > 0 and episode_num % model.save_eps_num == 0:
                    model.save(directory=model.load_dir,
                               filename=str(episode_num))

                model.writer.add_scalar('episode_reward', episode_reward,
                                        episode_num)
                break

    sm.close_all()
    vehicle.destroy()
示例#13
0
文件: costmap_rl.py 项目: Czworldy/GP
def main():
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    # world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.yamaha.yzf')
    #vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.*.*')
    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    # vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    global_dict['max_steer_angle'] = np.deg2rad(
        physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=9.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    env = CARLAEnv(world, vehicle, global_dict, args, trajectory_model)

    plan_thread = threading.Thread(target=make_plan, args=())

    while True:
        if (global_dict['img']
                is not None) and (global_dict['nav'] is not None) and (
                    global_dict['trans_costmap'] is not None):
            plan_thread.start()
            break
        else:
            time.sleep(0.001)

    # start to control
    print('Start to control')
    state = env.reset()

    episode_timesteps = 0
    episode_reward = 0
    max_steps = 1e9
    total_steps = 0
    max_episode_steps = 1000
    learning_starts = 10  #2000
    episode_num = 0
    last_episode_reward = 0

    # log
    total_driving_metre = 0

    while total_steps < max_steps:
        print("total_episode:", episode_num)
        episode_num += 1
        total_steps += 1
        episode_timesteps = 0
        episode_reward = 0
        total_driving_metre = 0

        #state_queue = []
        state = env.reset()
        #for _ in range(10): state_queue.append(state)
        #state = torch.stack(state_queue)
        plan_time = time.time()
        global_dict['state0'] = cu.getActorState('odom', plan_time,
                                                 global_dict['vehicle'])
        global_dict['state0'].x = global_dict['transform'].location.x
        global_dict['state0'].y = global_dict['transform'].location.y
        global_dict['state0'].z = global_dict['transform'].location.z
        global_dict['state0'].theta = np.deg2rad(
            global_dict['transform'].rotation.yaw)

        add_noise = True if random.random() < 0.5 else False
        for step in range(max_episode_steps):
            action = model.policy_net.get_action(state)
            #print('org:', action)
            if add_noise:
                if last_episode_reward < 50:
                    action = model.noise.get_action(action, 66)
                else:
                    action = model.noise.get_action(action, total_steps // 2)
            # print('action:', action)
            x_last = global_dict['transform'].location.x
            y_last = global_dict['transform'].location.y

            next_state, reward, done, ts = env.step(action, plan_time)

            plan_time = ts
            global_dict['state0'] = cu.getActorState('odom', plan_time,
                                                     global_dict['vehicle'])
            global_dict['state0'].x = global_dict['transform'].location.x
            global_dict['state0'].y = global_dict['transform'].location.y
            global_dict['state0'].z = global_dict['transform'].location.z
            global_dict['state0'].theta = np.deg2rad(
                global_dict['transform'].rotation.yaw)

            x_now = global_dict['transform'].location.x
            y_now = global_dict['transform'].location.y
            driving_metre_in_step = np.sqrt((x_now - x_last)**2 +
                                            (y_now - y_last)**2)
            total_driving_metre += driving_metre_in_step

            model.replay_buffer.push(state, action, reward, next_state, done)
            # print("next state :", type(next_state)) Tensor
            # print("next state shape:", next_state.shape)
            # print("state shape:", state.shape) next state shape: torch.Size([1, 200, 400])
            if len(model.replay_buffer) > max(learning_starts,
                                              model.batch_size):
                print("Start Train")
                model.train_step(total_steps, noise_std=0.2,
                                 noise_clip=0.5)  #noise_std = 0.2

            state = next_state
            episode_reward += reward
            total_steps += 1
            episode_timesteps += 1

            if done or episode_timesteps == max_episode_steps:
                logger.add_scalar('episode_reward', episode_reward,
                                  episode_num)
                logger.add_scalar('total_driving_metre', total_driving_metre,
                                  episode_num)
                #if len(model.replay_buffer) > max(learning_starts, model.batch_size):
                #    for i in range(episode_timesteps):
                #        model.train_step(total_steps, noise_std = 0.1, noise_clip=0.25)

                # print(len(model.replay_buffer))
                if episode_reward > 50:
                    print('Success')
                else:
                    print('Fail')
                last_episode_reward = episode_reward
                if episode_num % 50 == 0:
                    model.save(directory=ckpt_path, filename=str(episode_num))
                break

    sm.close_all()
    vehicle.destroy()
示例#14
0
文件: train_e2e.py 项目: Czworldy/GP
def main():
    global global_transform, max_steer_angle
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    settings = world.get_settings()
    settings.synchronous_mode = True
    settings.fixed_delta_seconds = 0.01
    world.apply_settings(settings)

    blueprint = world.get_blueprint_library()
    # world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')

    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()

    env = CARLAEnv(world, vehicle, global_dict, args)
    # state = env.reset()

    max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=6.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    time.sleep(0.5)

    while True:
        if (global_dict['img']
                is not None) and (global_dict['nav']
                                  is not None) and (global_dict['img_nav']
                                                    is not None):
            break
        else:
            world.tick()
            # time.sleep(0.01)

    print('Start to control')

    episode_timesteps = 0
    episode_reward = 0
    max_steps = 1e9
    total_steps = 0
    max_episode_steps = 1000
    learning_starts = 2000  #2000
    episode_num = 0
    while total_steps < max_steps:
        print("total_episode:", episode_num)
        episode_num += 1
        total_steps += 1
        episode_timesteps = 0
        episode_reward = 0
        total_driving_metre = 0

        state = env.reset()
        plan_time = time.time()
        global_dict['state0'] = cu.getActorState('odom', global_plan_time,
                                                 global_dict['vehicle'])
        global_dict['state0'].x = global_transform.location.x
        global_dict['state0'].y = global_transform.location.y
        global_dict['state0'].z = global_transform.location.z
        global_dict['state0'].theta = np.deg2rad(global_transform.rotation.yaw)

        add_noise = True if random.random() < 0.5 else False
        for step in range(max_episode_steps):

            state_tensor = state.unsqueeze(0).to(device)
            action = model.policy_net(state_tensor)
            action = action.detach().cpu().numpy()[0]

            if add_noise:
                action = model.noise.get_action(action)

            x_last = global_transform.location.x
            y_last = global_transform.location.y

            next_state, reward, done, ts = env.step(action)

            plan_time = ts
            global_dict['state0'] = cu.getActorState('odom', global_plan_time,
                                                     global_dict['vehicle'])
            global_dict['state0'].x = global_transform.location.x
            global_dict['state0'].y = global_transform.location.y
            global_dict['state0'].z = global_transform.location.z
            global_dict['state0'].theta = np.deg2rad(
                global_transform.rotation.yaw)

            x_now = global_transform.location.x
            y_now = global_transform.location.y
            driving_metre_in_step = np.sqrt((x_now - x_last)**2 +
                                            (y_now - y_last)**2)
            total_driving_metre += driving_metre_in_step

            model.replay_buffer.push(state, action, reward, next_state, done)
            if len(model.replay_buffer) > max(learning_starts,
                                              model.batch_size):
                print("Start Train")
                # time_s = time.time()
                model.train_step(
                    total_steps, noise_std=0.2,
                    noise_clip=0.3)  #noise_std = 0.2 noise_clip = 0.5
                # time_e = time.time()
                # print('time:', time_e - time_s)

            state = next_state
            episode_reward += reward
            total_steps += 1
            episode_timesteps += 1
            if done or episode_timesteps == max_episode_steps:
                logger.add_scalar('episode_reward', episode_reward,
                                  episode_num)
                logger.add_scalar('total_driving_metre', total_driving_metre,
                                  episode_num)
                #if len(model.replay_buffer) > max(learning_starts, model.batch_size):
                #    for i in range(episode_timesteps):
                #        model.train_step(total_steps, noise_std = 0.1, noise_clip=0.25)

                # print(len(model.replay_buffer))
                if episode_reward > 50:
                    print('Success')
                else:
                    print('Fail')
                # last_episode_reward = episode_reward
                if episode_num % 5 == 0:
                    model.save(directory=ckpt_path, filename=str(episode_num))
                break

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#15
0
def main():
    global global_transform, max_steer_angle
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    settings = world.get_settings()
    settings.synchronous_mode = True
    settings.fixed_delta_seconds = 0.05
    world.apply_settings(settings)

    blueprint = world.get_blueprint_library()
    # world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')

    global_dict['vehicle'] = vehicle
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()

    env = CARLAEnv(world, vehicle, global_dict, args, generator)
    # state = env.reset()

    max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            #'transform':carla.Transform(carla.Location(x=0.0, y=4.0, z=4.0), carla.Rotation(pitch=-30, yaw=-60)),
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=6.0),
                            carla.Rotation(pitch=-45)),
            #'transform':carla.Transform(carla.Location(x=0.0, y=0.0, z=6.0), carla.Rotation(pitch=-90)),
            'callback':
            view_image_callback,
        },
        'collision': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': collision_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    time.sleep(0.5)

    while True:
        if (global_dict['img']
                is not None) and (global_dict['nav']
                                  is not None) and (global_dict['img_nav']
                                                    is not None):
            break
        else:
            world.tick()
            # time.sleep(0.01)

    # wait for the first plan result
    # while not start_control:
    #     time.sleep(0.001)

    print('Start to control')

    # ctrller = CapacController(world, vehicle, 30)

    episode_timesteps = 0
    episode_reward = 0
    max_steps = 1e9
    total_steps = 0
    max_episode_steps = 1000
    learning_starts = 1000  #2000
    episode_num = 0
    start_train = False

    while total_steps < max_steps:
        print("total_episode:", episode_num)
        episode_num += 1
        total_steps += 1
        episode_timesteps = 0
        episode_reward = 0
        total_driving_metre = 0

        state = env.reset()
        plan_time = time.time()
        global_dict['state0'] = cu.getActorState('odom', global_plan_time,
                                                 global_dict['vehicle'])
        global_dict['state0'].x = global_transform.location.x
        global_dict['state0'].y = global_transform.location.y
        global_dict['state0'].z = global_transform.location.z
        global_dict['state0'].theta = np.deg2rad(global_transform.rotation.yaw)

        add_noise = True if random.random() < 0.0 else False
        print("add noise:", add_noise)
        for step in range(max_episode_steps):
            # t = torch.arange(0, 0.99, args.dt).unsqueeze(1).to(device)
            # t.requires_grad = True
            t = np.arange(0, 0.99, args.dt)
            points_num = len(t)

            # v = global_dict['v0'] if global_dict['v0'] > 4 else 4
            # v_0 = torch.FloatTensor([v/args.max_speed]).unsqueeze(1)
            # v_0 = v_0.to(device)
            if state['v0'] < 4:
                state['v0'] == 4

            condition = torch.FloatTensor([state['v0'] / args.max_speed] *
                                          points_num).view(-1, 1)
            condition = condition.to(device)

            input_img = state['img_nav'].unsqueeze(0).to(device)
            v_0 = torch.FloatTensor([state['v0'] / args.max_speed
                                     ]).unsqueeze(1).to(device)

            action = model.policy_net(input_img, v_0)
            action = action.detach().cpu().numpy()[0]

            if add_noise:
                action = model.noise.get_action(action)
            # print(action)
            x_last = global_transform.location.x
            y_last = global_transform.location.y

            next_state, reward, done, ts = env.step(action, plan_time,
                                                    condition)

            plan_time = ts
            global_dict['state0'] = cu.getActorState('odom', global_plan_time,
                                                     global_dict['vehicle'])
            global_dict['state0'].x = global_transform.location.x
            global_dict['state0'].y = global_transform.location.y
            global_dict['state0'].z = global_transform.location.z
            global_dict['state0'].theta = np.deg2rad(
                global_transform.rotation.yaw)

            x_now = global_transform.location.x
            y_now = global_transform.location.y
            driving_metre_in_step = np.sqrt((x_now - x_last)**2 +
                                            (y_now - y_last)**2)
            total_driving_metre += driving_metre_in_step

            model.replay_buffer.push(state, action, reward, next_state, done)
            # print(sys.getsizeof(model.replay_buffer.buffer))
            # print(u'当前进程的内存使用:%.4f GB' % (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) )

            if len(model.replay_buffer) > max(learning_starts,
                                              model.batch_size):
                start_train = True
                print("Start Train:")
                # time_s = time.time()
                model.train_step(
                    total_steps, noise_std=0.5,
                    noise_clip=2)  #noise_std = 0.2 noise_clip = 0.5
                # time_e = time.time()
                # print('time:', time_e - time_s)

            state = next_state
            episode_reward += reward
            total_steps += 1
            episode_timesteps += 1
            if done or episode_timesteps == max_episode_steps:
                logger.add_scalar('episode_reward', episode_reward,
                                  episode_num)
                logger.add_scalar('total_driving_metre', total_driving_metre,
                                  episode_num)
                #if len(model.replay_buffer) > max(learning_starts, model.batch_size):
                #    for i in range(episode_timesteps):
                #        model.train_step(total_steps, noise_std = 0.1, noise_clip=0.25)

                # print(len(model.replay_buffer))
                print("episode_reward:%.2f" % (episode_reward))
                # if episode_reward > 50:
                #     print('Success')
                # else:
                #     print('Fail')
                # last_episode_reward = episode_reward
                if episode_num % 20 == 0 and start_train == True:
                    model.save(directory=ckpt_path, filename=str(episode_num))
                break

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#16
0
def main():
    global global_nav, global_control, global_pos, global_vel
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    #world = client.get_world()
    world = client.load_world('Town10')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    #world.set_weather(carla.WeatherParameters.ClearNoon)
    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')
    # Enables or disables the simulation of physics on this actor.
    vehicle.set_simulate_physics(True)

    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=3.5),
                            carla.Rotation(pitch=-30)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()
    time.sleep(0.3)

    spawn_points = world_map.get_spawn_points()
    waypoint_tuple_list = world_map.get_topology()
    origin_map = get_map(waypoint_tuple_list)

    agent = BasicAgent(vehicle, target_speed=MAX_SPEED)

    #port = 8000
    #tm = client.get_trafficmanager(port)
    #vehicle.set_autopilot(True,port)
    #tm.ignore_lights_percentage(vehicle,100)

    destination = get_random_destination(spawn_points)
    plan_map = replan(agent, destination, copy.deepcopy(origin_map))

    joystick = JoyStick(verbose=False)
    joystick.start()

    for cnt in tqdm(range(args.num)):
        if close2dest(vehicle, destination):
            destination = get_random_destination(spawn_points)
            plan_map = replan(agent, destination, copy.deepcopy(origin_map))
        """ 
        if vehicle.is_at_traffic_light():
            traffic_light = vehicle.get_traffic_light()
            if traffic_light.get_state() == carla.TrafficLightState.Red:
                traffic_light.set_state(carla.TrafficLightState.Green)
        """
        #control = agent.run_step()
        control = joystick.get()
        velocity = vehicle.get_velocity()
        if np.sqrt(velocity.x**2 + velocity.y**2) > 8:
            control.throttle = 0
        #control.manual_gear_shift = False
        global_control = control
        vehicle.apply_control(control)
        nav = get_nav(vehicle, plan_map)

        global_nav = nav
        global_pos = vehicle.get_transform()
        global_vel = vehicle.get_velocity()

        #cv2.imshow('Nav', nav)
        cv2.imshow('Vision', global_view_img)
        cv2.waitKey(10)
        index = str(time.time())
        #save_data(index)

    cmd_file.close()
    pos_file.close()
    vel_file.close()
    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()
示例#17
0
def main():
    global global_img, global_view_img, global_pcd
    client = carla.Client(config['host'], config['port'])
    client.set_timeout(config['timeout'])

    world = client.load_world('Town01')

    weather = carla.WeatherParameters(cloudiness=random.randint(0, 10),
                                      precipitation=0,
                                      sun_altitude_angle=random.randint(
                                          50, 90))

    set_weather(world, weather)

    blueprint = world.get_blueprint_library()
    world_map = world.get_map()

    vehicle = add_vehicle(world, blueprint, vehicle_type='vehicle.audi.a2')

    vehicle.set_simulate_physics(True)
    physics_control = vehicle.get_physics_control()
    #max_steer_angle = np.deg2rad(physics_control.wheels[0].max_steer_angle)
    sensor_dict = {
        'camera': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': image_callback,
        },
        'camera:view': {
            'transform':
            carla.Transform(carla.Location(x=-3.0, y=0.0, z=8.0),
                            carla.Rotation(pitch=-45)),
            'callback':
            view_image_callback,
        },
        'lidar': {
            'transform': carla.Transform(carla.Location(x=0.5, y=0.0, z=2.5)),
            'callback': lidar_callback,
        },
    }

    sm = SensorManager(world, blueprint, vehicle, sensor_dict)
    sm.init_all()

    #agent = BasicAgent(vehicle, target_speed=MAX_SPEED)

    destination = carla.Transform()
    destination.location = world.get_random_location_from_navigation()

    env = CARLAEnv()
    env.reset()
    env.step()

    # start to control
    print('Start to control')
    vehicle.set_autopilot(True)
    while True:
        # change destination
        if close2dest(vehicle, destination):
            destination = carla.Transform()
            destination.location = world.get_random_location_from_navigation()

        #control = None
        #vehicle.apply_control(control)
        #localtion = carla.Location(x = global_transform.location.x+x, y=global_transform.location.y+y, z=2.0)
        #world.debug.draw_point(localtion, size=0.3, color=carla.Color(255,0,0), life_time=10.0)

        forward_vector = vehicle.get_transform().get_forward_vector()
        begin = vehicle.get_location()
        end = vehicle.get_location()
        end.x = end.x + forward_vector.x * 8
        end.y = end.y + forward_vector.y * 8
        end.z = end.z + forward_vector.z * 8
        world.debug.draw_line(begin,
                              end,
                              thickness=0.2,
                              color=carla.Color(r=255, g=0, b=0, a=128),
                              life_time=0.1)

        cv2.imshow('Visualization', global_view_img)
        cv2.waitKey(5)

        #time.sleep(1/60.)

    cv2.destroyAllWindows()
    sm.close_all()
    vehicle.destroy()