def singa_to_onnx(epochs, use_cpu=False, batchsize=32): sgd = opt.SGD(lr=0.1) # operations initialization conv1 = autograd.Conv2d(1, 8, 3, 2, padding=1) # 28 - 14 conv2 = autograd.Conv2d(8, 4, 3, 2, padding=1) # 14 - 7 pooling = autograd.MaxPool2d(3, 2, padding=1) # 7 - 4 linear = autograd.Linear(64, 10) def forward(x, t): y = conv1(x) y = autograd.relu(y) y = conv2(y) y = autograd.relu(y) y = pooling(y) y = autograd.flatten(y) y = linear(y) loss = autograd.softmax_cross_entropy(y, t) return loss, y autograd.training = True (x_train, y_train), (x_test, y_test), dev = common(use_cpu) niter = 1 # x_train.shape[0] // batchsize for epoch in range(epochs): accuracy_rate = 0.0 loss_rate = 0.0 for i in range(niter): inputs = tensor.Tensor( device=dev, data=x_train[i * batchsize : (i + 1) * batchsize], stores_grad=False, name="input", ) targets = tensor.Tensor( device=dev, data=y_train[i * batchsize : (i + 1) * batchsize], requires_grad=False, stores_grad=False, name="target", ) loss, y = forward(inputs, targets) accuracy_rate += accuracy( tensor.to_numpy(y), y_train[i * batchsize : (i + 1) * batchsize] ) loss_rate += tensor.to_numpy(loss)[0] for p, gp in autograd.backward(loss): sgd.update(p, gp) print( "accuracy is {}, loss is {}".format( accuracy_rate / niter, loss_rate / niter)) model = sonnx.to_onnx_model([inputs], [y]) sonnx.save(model, "cnn.onnx")
label = to_categorical(label, 2).astype(np.float32) print('train_data_shape:', data.shape) print('train_label_shape:', label.shape) inputs = Tensor(data=data) target = Tensor(data=label) linear1 = autograd.Linear(3, 2) linear2 = autograd.Linear(2, 2) linear3 = autograd.Linear(2, 2) sgd = optimizer.SGD(0.00) # training process for i in range(1): x = linear1(inputs) x = autograd.relu(x) x1 = linear2(x) x2 = linear3(x) x3 = autograd.add(x1, x2) y = autograd.softmax(x3) loss = autograd.cross_entropy(y, target) gradient = autograd.backward(loss) for p, gp in gradient: sgd.apply(0, gp, p, '') if (i % 100 == 0): print('training loss = ', tensor.to_numpy(loss)[0]) model = sonnx.to_onnx_model([inputs], [y]) onnx.save(model, 'linear.onnx')