示例#1
0
    def read_hamiltonian(self, **kwargs):
        """ Returns the electronic structure from the siesta.TSHS file """
        tshs_g = self.read_geometry()
        geom = _geometry_align(tshs_g, kwargs.get('geometry', tshs_g),
                               self.__class__, 'read_hamiltonian')

        # read the sizes used...
        sizes = _siesta.read_tshs_sizes(self.file)
        _bin_check(self, 'read_hamiltonian', 'could not read sizes.')
        isc = _siesta.read_tshs_cell(self.file, sizes[3])[2].T
        _bin_check(self, 'read_hamiltonian', 'could not read cell.')
        spin = sizes[0]
        no = sizes[2]
        nnz = sizes[4]
        ncol, col, dH, dS = _siesta.read_tshs_hs(self.file, spin, no, nnz)
        _bin_check(self, 'read_hamiltonian',
                   'could not read Hamiltonian and overlap matrix.')

        # Check whether it is an orthogonal basis set
        orthogonal = np.abs(dS).sum() == geom.no

        # Create the Hamiltonian container
        H = Hamiltonian(geom, spin, nnzpr=1, orthogonal=orthogonal)

        # Create the new sparse matrix
        H._csr.ncol = ncol.astype(np.int32, copy=False)
        H._csr.ptr = np.insert(np.cumsum(ncol, dtype=np.int32), 0, 0)
        # Correct fortran indices
        H._csr.col = col.astype(np.int32, copy=False) - 1
        H._csr._nnz = len(col)

        if orthogonal:
            H._csr._D = _a.emptyd([nnz, spin])
            H._csr._D[:, :] = dH[:, :]
        else:
            H._csr._D = _a.emptyd([nnz, spin + 1])
            H._csr._D[:, :spin] = dH[:, :]
            H._csr._D[:, spin] = dS[:]

        _mat_spin_convert(H)

        # Convert to sisl supercell
        _csr_from_sc_off(H.geometry, isc, H._csr)

        # Find all indices where dS == 1 (remember col is in fortran indices)
        idx = col[np.isclose(dS, 1.).nonzero()[0]]
        if np.any(idx > no):
            print('Number of orbitals: {}'.format(no))
            print(idx)
            raise SileError(
                str(self) + '.read_hamiltonian could not assert '
                'the supercell connections in the primary unit-cell.')

        return H
示例#2
0
    def unfold_points(self, k):
        r""" Return a list of k-points to be evaluated for this objects unfolding

        The k-point `k` is with respect to the unfolded geometry.
        The return list of `k` points are the k-points required to be sampled in the
        folded geometry.

        Parameters
        ----------
        k : (3,) of float
           k-point evaluation corresponding to the unfolded unit-cell

        Returns
        -------
        k_unfold
            a list of ``np.prod(self.bloch)`` k-points used for the unfolding
        """
        k = _a.arrayd(k)

        # Create expansion points
        B = self._bloch
        unfold = _a.emptyd([B[2], B[1], B[0], 3])
        # Use B-casting rules (much simpler)
        unfold[:, :, :, 0] = (aranged(B[0]).reshape(1, 1, -1) + k[0]) / B[0]
        unfold[:, :, :, 1] = (aranged(B[1]).reshape(1, -1, 1) + k[1]) / B[1]
        unfold[:, :, :, 2] = (aranged(B[2]).reshape(-1, 1, 1) + k[2]) / B[2]
        # Back-transform shape
        return unfold.reshape(-1, 3)
示例#3
0
    def read_overlap(self, **kwargs):
        """ Returns the overlap matrix from the TranSiesta file """
        tshs_g = self.read_geometry()
        geom = _geometry_align(tshs_g, kwargs.get('geometry', tshs_g),
                               self.__class__, 'read_overlap')

        # read the sizes used...
        sizes = _siesta.read_tshs_sizes(self.file)
        _bin_check(self, 'read_overlap', 'could not read sizes.')
        isc = _siesta.read_tshs_cell(self.file, sizes[3])[2].T
        _bin_check(self, 'read_overlap', 'could not read cell.')
        no = sizes[2]
        nnz = sizes[4]
        ncol, col, dS = _siesta.read_tshs_s(self.file, no, nnz)
        _bin_check(self, 'read_overlap', 'could not read overlap matrix.')

        # Create the Hamiltonian container
        S = SparseOrbitalBZ(geom, nnzpr=1)

        # Create the new sparse matrix
        S._csr.ncol = ncol.astype(np.int32, copy=False)
        S._csr.ptr = np.insert(np.cumsum(ncol, dtype=np.int32), 0, 0)
        # Correct fortran indices
        S._csr.col = col.astype(np.int32, copy=False) - 1
        S._csr._nnz = len(col)

        S._csr._D = _a.emptyd([nnz, 1])
        S._csr._D[:, 0] = dS[:]

        # Convert to sisl supercell
        _csr_from_sc_off(S.geometry, isc, S._csr)

        return S
示例#4
0
    def lineark(self, ticks=False):
        """ A 1D array which corresponds to the delta-k values of the path

        This is meant for plotting

        Examples
        --------

        >>> p = BandStructure(...) # doctest: +SKIP
        >>> eigs = Hamiltonian.eigh(p) # doctest: +SKIP
        >>> for i in range(len(Hamiltonian)): # doctest: +SKIP
        ...     plt.plot(p.lineark(), eigs[:, i]) # doctest: +SKIP

        >>> p = BandStructure(...) # doctest: +SKIP
        >>> eigs = Hamiltonian.eigh(p) # doctest: +SKIP
        >>> lk, kt, kl = p.lineark(True) # doctest: +SKIP
        >>> plt.xticks(kt, kl) # doctest: +SKIP
        >>> for i in range(len(Hamiltonian)): # doctest: +SKIP
        ...     plt.plot(lk, eigs[:, i]) # doctest: +SKIP

        Parameters
        ----------
        ticks : bool, optional
           if `True` the ticks for the points are also returned

           lk, xticks, label_ticks, lk = BandStructure.lineark(True)

        Returns
        -------
        linear_k : The positions in reciprocal space determined by the distance between points
        k_tick : Linear k-positions of the points, only returned if `ticks` is ``True``
        k_label : Labels at `k_tick`, only returned if `ticks` is ``True``
        """
        # Calculate points
        k = [self.tocartesian(pnt) for pnt in self.point]
        # Get difference between points
        dk = np.diff(k, axis=0)
        # Calculate the cumultative distance between points
        k_len = np.insert(_a.cumsumd((dk ** 2).sum(1) ** .5), 0, 0.)
        xtick = [None] * len(k)
        # Prepare output array
        dK = _a.emptyd(len(self))

        # short-hand
        ls = np.linspace

        xtick = np.insert(_a.cumsumi(self.division), 0, 0)
        for i in range(len(dk)):
            n = self.division[i]
            end = i == len(dk) - 1

            dK[xtick[i]:xtick[i+1]] = ls(k_len[i], k_len[i+1], n, dtype=np.float64, endpoint=end)
        xtick[-1] -= 1

        # Get label tick, in case self.name is a single string 'ABCD'
        label_tick = [a for a in self.name]
        if ticks:
            return dK, dK[xtick], label_tick
        return dK
示例#5
0
    def __init__(self, parent, nkpt, displacement=None, size=None, trs=True):
        super(MonkhorstPack, self).__init__(parent)

        if isinstance(nkpt, Integral):
            nkpt = np.diag([nkpt] * 3)
        elif isinstance(nkpt[0], Integral):
            nkpt = np.diag(nkpt)

        # Now we have a matrix of k-points
        if np.any(nkpt - np.diag(np.diag(nkpt)) != 0):
            raise NotImplementedError(
                self.__class__.__name__ +
                " with off-diagonal components is not implemented yet")

        if displacement is None:
            displacement = np.zeros(3, np.float64)
        elif isinstance(displacement, Real):
            displacement = np.zeros(3, np.float64) + displacement

        if size is None:
            size = _a.onesd(3)
        elif isinstance(size, Real):
            size = _a.zerosd(3) + size

        # Retrieve the diagonal number of values
        Dn = np.diag(nkpt).astype(np.int32)
        if np.any(Dn) == 0:
            raise ValueError(self.__class__.__name__ +
                             ' *must* be initialized with '
                             'diagonal elements different from 0.')

        i_trs = -1
        if trs:
            # Figure out which direction to TRS
            nmax = 0
            for i in [0, 1, 2]:
                if displacement[i] == 0. and Dn[i] > nmax:
                    nmax = Dn[i]
                    i_trs = i

        # Calculate k-points and weights along all directions
        kw = [
            self.grid(Dn[i], displacement[i], size[i], i == i_trs)
            for i in (0, 1, 2)
        ]

        self._k = _a.emptyd((kw[0][0].size, kw[1][0].size, kw[2][0].size, 3))
        self._w = _a.onesd(self._k.shape[:-1])
        for i in (0, 1, 2):
            k = kw[i][0].reshape(-1, 1, 1)
            w = kw[i][1].reshape(-1, 1, 1)
            self._k[..., i] = np.rollaxis(k, 0, i + 1)
            self._w[...] *= np.rollaxis(w, 0, i + 1)

        del kw
        self._k.shape = (-1, 3)
        self._k = np.where(self._k > .5, self._k - 1, self._k)
        self._w.shape = (-1, )
示例#6
0
    def _index_shape_ellipsoid(self, ellipsoid):
        """ Internal routine for ellipsoid shape-indices """
        # Figure out the points on the ellipsoid
        rad1 = pi / 180
        theta, phi = ogrid[-pi:pi:rad1, 0:pi:rad1]

        rxyz = _a.emptyd([theta.size, phi.size, 3])
        rxyz[..., 2] = cos(phi)
        sin(phi, out=phi)
        rxyz[..., 0] = cos(theta) * phi
        rxyz[..., 1] = sin(theta) * phi
        rxyz = dot(rxyz, ellipsoid._v) + ellipsoid.center.reshape(1, 3)
        del theta, phi

        # Get all indices of the ellipsoid circumference
        return self.index(rxyz)
示例#7
0
    def solve_lagrange(self):
        r""" Calculate the coefficients according to Pulay's method, return everything + Lagrange multiplier """
        hist = self.history
        n_h = len(hist)
        metric = self._metric

        if n_h == 0:
            # Externally the coefficients should reflect the weight per previous iteration.
            # The mixing weight is an additional parameter
            return _a.arrayd([1.]), 100.
        elif n_h == 1:
            return _a.arrayd([1.]), metric(hist[0][-1], hist[0][-1])

        # Initialize the matrix to be solved against
        B = _a.emptyd([n_h + 1, n_h + 1])

        # Fill matrix B
        for i in range(n_h):
            ei = hist[i][-1]
            B[i, i] = metric(ei, ei)
            for j in range(i + 1, n_h):
                ej = hist[j][-1]

                B[i, j] = metric(ei, ej)
                B[j, i] = B[i, j]
        B[:, n_h] = 1.
        B[n_h, :] = 1.
        B[n_h, n_h] = 0.

        # Although B contains 1 and a number on the order of
        # number of elements (self._hist.size), it seems very
        # numerically stable.

        # Create RHS
        RHS = _a.zerosd(n_h + 1)
        RHS[-1] = 1

        try:
            # Apparently we cannot use assume_a='sym'
            # Is this because sym also implies positive definitiness?
            # However, these are matrices of order ~30, so we don't care
            c = solve(B, RHS)
            return c[:-1], -c[-1]
        except np.linalg.LinAlgError as e:
            # We have a LinalgError
            return _a.arrayd([1.]), metric(hist[-1][-1], hist[-1][-1])
示例#8
0
def spher2cart(r, theta, phi):
    r""" Convert spherical coordinates to cartesian coordinates

    Parameters
    ----------
    r : array_like
       radius
    theta : array_like
       azimuthal angle in the :math:`x-y` plane
    phi : array_like
       polar angle from the :math:`z` axis
    """
    rx = r * cos(theta) * sin(phi)
    R = _a.emptyd(rx.shape + (3, ))
    R[..., 0] = rx
    del rx
    R[..., 1] = r * sin(theta) * sin(phi)
    R[..., 2] = r * cos(phi)
    return R
示例#9
0
    def _index_shape_cuboid(self, cuboid):
        """ Internal routine for cuboid shape-indices """
        # Construct all points on the outer rim of the cuboids
        min_d = fnorm(self.dcell).min()

        # Retrieve cuboids edge-lengths
        v = cuboid.edge_length
        # Create normalized cuboid vectors (because we expan via the lengths below
        vn = cuboid._v / fnorm(cuboid._v).reshape(-1, 1)
        LL = (cuboid.center - cuboid._v.sum(0) / 2).reshape(1, 3)
        UR = (cuboid.center + cuboid._v.sum(0) / 2).reshape(1, 3)

        # Create coordinates
        a = vn[0, :].reshape(1, -1) * _a.aranged(0, v[0] + min_d, min_d).reshape(-1, 1)
        b = vn[1, :].reshape(1, -1) * _a.aranged(0, v[1] + min_d, min_d).reshape(-1, 1)
        c = vn[2, :].reshape(1, -1) * _a.aranged(0, v[2] + min_d, min_d).reshape(-1, 1)

        # Now create all sides
        sa = a.shape[0]
        sb = b.shape[0]
        sc = c.shape[0]

        def plane(v1, v2):
            return (v1.reshape(-1, 1, 3) + v2.reshape(1, -1, 3)).reshape(1, -1, 3)

        # Allocate for the 6 faces of the cuboid
        rxyz = _a.emptyd([2, sa * sb + sa * sc + sb * sc, 3])
        # Define the LL and UR
        rxyz[0, :, :] = LL
        rxyz[1, :, :] = UR

        i = 0
        rxyz[:, i:i + sa * sb, :] += plane(a, b)
        i += sa * sb
        rxyz[:, i:i + sa * sc, :] += plane(a, c)
        i += sa * sc
        rxyz[:, i:i + sb * sc, :] += plane(b, c)
        del a, b, c, sa, sb, sc
        rxyz.shape = (-1, 3)

        # Get all indices of the cuboid planes
        return self.index(rxyz)
示例#10
0
    def _index_shape(self, shape):
        """ Internal routine for shape-indices """
        # First grab the sphere, subsequent indices will be reduced
        # by the actual shape
        cuboid = shape.toCuboid()
        ellipsoid = shape.toEllipsoid()
        if ellipsoid.volume() > cuboid.volume():
            idx = self._index_shape_cuboid(cuboid)
        else:
            idx = self._index_shape_ellipsoid(ellipsoid)

        # Get min/max
        imin = idx.min(0)
        imax = idx.max(0)
        del idx

        dc = self.dcell

        # Now to find the actual points inside the shape
        # First create all points in the square and then retrieve all indices
        # within.
        ix = _a.aranged(imin[0], imax[0] + 0.5)
        iy = _a.aranged(imin[1], imax[1] + 0.5)
        iz = _a.aranged(imin[2], imax[2] + 0.5)
        output_shape = (ix.size, iy.size, iz.size, 3)
        rxyz = _a.emptyd(output_shape)
        ao = add.outer
        ao(ao(ix * dc[0, 0], iy * dc[1, 0]), iz * dc[2, 0], out=rxyz[:, :, :, 0])
        ao(ao(ix * dc[0, 1], iy * dc[1, 1]), iz * dc[2, 1], out=rxyz[:, :, :, 1])
        ao(ao(ix * dc[0, 2], iy * dc[1, 2]), iz * dc[2, 2], out=rxyz[:, :, :, 2])
        idx = shape.within_index(rxyz.reshape(-1, 3))
        del rxyz
        i = _a.emptyi(output_shape)
        i[:, :, :, 0] = ix.reshape(-1, 1, 1)
        i[:, :, :, 1] = iy.reshape(1, -1, 1)
        i[:, :, :, 2] = iz.reshape(1, 1, -1)
        del ix, iy, iz
        i.shape = (-1, 3)
        i = take(i, idx, axis=0)
        del idx

        return i
示例#11
0
    def fermi_level(self,
                    bz=None,
                    q=None,
                    distribution='fermi_dirac',
                    q_tol=1e-10):
        """ Calculate the Fermi-level using a Brillouinzone sampling and a target charge

        The Fermi-level will be calculated using an iterative approach by first calculating all eigenvalues
        and subsequently fitting the Fermi level to the final charge (`q`).

        Parameters
        ----------
        bz : Brillouinzone, optional
            sampled k-points and weights, the ``bz.parent`` will be equal to this object upon return
            default to Gamma-point
        q : float, list of float, optional
            seeked charge, if not set will be equal to ``self.geometry.q0``. If a list of two is passed
            there will be calculated a Fermi-level per spin-channel. If the Hamiltonian is not spin-polarized
            the sum of the list will be used and only a single fermi-level will be returned.
        distribution : str, func, optional
            used distribution, must accept the keyword ``mu`` as parameter for the Fermi-level
        q_tol : float, optional
            tolerance of charge for finding the Fermi-level

        Returns
        -------
        float or array_like
            the Fermi-level of the system (or two if two different charges are passed)
        """
        if bz is None:
            # Gamma-point only
            from .brillouinzone import BrillouinZone
            bz = BrillouinZone(self)
        else:
            # Overwrite the parent in bz
            bz.set_parent(self)

        if q is None:
            if self.spin.is_unpolarized:
                q = self.geometry.q0 * 0.5
            else:
                q = self.geometry.q0

        # Ensure we have an "array" in case of spin-polarized calculations
        q = _a.asarrayd(q)
        if np.any(q <= 0.):
            raise ValueError(
                f"{self.__class__.__name__}.fermi_level cannot calculate the Fermi level "
                "for 0 electrons.")

        if isinstance(distribution, str):
            distribution = get_distribution(distribution)

        # B-cast for easier weights
        w = bz.weight.reshape(-1, 1)

        # Internal class to calculate the Fermi-level
        def _Ef(q, eig):
            # We could reduce it depending on the temperature,
            # however the distribution does not have the kT
            # parameter available.
            min_Ef, max_Ef = eig.min(), eig.max()

            nextafter = np.nextafter
            while nextafter(min_Ef, max_Ef) < max_Ef:
                Ef = (min_Ef + max_Ef) * 0.5

                # Calculate guessed charge
                qt = (distribution(eig, mu=Ef) * w).sum()

                if abs(qt - q) < q_tol:
                    return Ef

                if qt >= q:
                    max_Ef = Ef
                elif qt <= q:
                    min_Ef = Ef

            return Ef

        # Retrieve dispatcher for averaging
        eigh = bz.apply.array.eigh

        if self.spin.is_polarized and q.size == 2:
            if np.any(q >= len(self)):
                raise ValueError(
                    f"{self.__class__.__name__}.fermi_level cannot calculate the Fermi level "
                    "for electrons ({q}) equal to or above number of orbitals ({len(self)})."
                )
            # We need to do Fermi-level separately since the user requests
            # separate fillings
            Ef = _a.emptyd(2)
            Ef[0] = _Ef(q[0], eigh(spin=0))
            Ef[1] = _Ef(q[1], eigh(spin=1))
        else:
            # Ensure a single charge
            q = q.sum()
            if q >= len(self):
                raise ValueError(
                    f"{self.__class__.__name__}.fermi_level cannot calculate the Fermi level "
                    "for electrons ({q}) equal to or above number of orbitals ({len(self)})."
                )
            if self.spin.is_polarized:
                Ef = _Ef(q, np.concatenate(
                    [eigh(spin=0), eigh(spin=1)], axis=1))
            else:
                Ef = _Ef(q, eigh())

        return Ef
示例#12
0
    def read_energy_density_matrix(self, **kwargs):
        """ Returns the energy density matrix from the siesta.DM file """

        # Now read the sizes used...
        spin, no, nsc, nnz = _siesta.read_tsde_sizes(self.file)
        _bin_check(self, 'read_energy_density_matrix',
                   'could not read energy density matrix sizes.')
        ncol, col, dEDM = _siesta.read_tsde_edm(self.file, spin, no, nsc, nnz)
        _bin_check(self, 'read_energy_density_matrix',
                   'could not read energy density matrix.')

        # Try and immediately attach a geometry
        geom = kwargs.get('geometry', kwargs.get('geom', None))
        if geom is None:
            # We truly, have no clue,
            # Just generate a boxed system
            xyz = [[x, 0, 0] for x in range(no)]
            sc = SuperCell([no, 1, 1], nsc=nsc)
            geom = Geometry(xyz, Atom(1), sc=sc)

        if nsc[0] != 0 and np.any(geom.nsc != nsc):
            # We have to update the number of supercells!
            geom.set_nsc(nsc)

        if geom.no != no:
            raise SileError(
                str(self) + '.read_energy_density_matrix could '
                'not use the passed geometry as the number of atoms or orbitals '
                'is inconsistent with DM file.')

        # Create the energy density matrix container
        EDM = EnergyDensityMatrix(geom,
                                  spin,
                                  nnzpr=1,
                                  dtype=np.float64,
                                  orthogonal=False)

        # Create the new sparse matrix
        EDM._csr.ncol = ncol.astype(np.int32, copy=False)
        EDM._csr.ptr = np.insert(np.cumsum(ncol, dtype=np.int32), 0, 0)
        # Correct fortran indices
        EDM._csr.col = col.astype(np.int32, copy=False) - 1
        EDM._csr._nnz = len(col)

        EDM._csr._D = _a.emptyd([nnz, spin + 1])
        EDM._csr._D[:, :spin] = dEDM[:, :]
        # EDM file does not contain overlap matrix... so neglect it for now.
        EDM._csr._D[:, spin] = 0.

        _mat_spin_convert(EDM)

        # Convert the supercells to sisl supercells
        if nsc[0] != 0 or geom.no_s >= col.max():
            _csr_from_siesta(geom, EDM._csr)
        else:
            warn(
                str(self) +
                '.read_energy_density_matrix may result in a wrong sparse pattern!'
            )

        return EDM
示例#13
0
    def fermi_level(self,
                    bz=None,
                    q=None,
                    distribution='fermi_dirac',
                    q_tol=1e-12):
        """ Calculate the Fermi-level using a Brillouinzone sampling and a target charge

        The Fermi-level will be calculated using an iterative approach by first calculating all eigenvalues
        and subsequently fitting the Fermi level to the final charge (`q`).

        Parameters
        ----------
        bz : Brillouinzone, optional
            sampled k-points and weights, the ``bz.parent`` will be equal to this object upon return
            default to Gamma-point
        q : float, list of float, optional
            seeked charge, if not set will be equal to ``self.geometry.q0``. If a list of two is passed
            there will be calculated a Fermi-level per spin-channel. If the Hamiltonian is not spin-polarized
            the sum of the list will be used and only a single fermi-level will be returned.
        distribution : str, func, optional
            used distribution, must accept the keyword ``mu`` as parameter for the Fermi-level
        q_tol : float, optional
            tolerance of charge for finding the Fermi-level

        Returns
        -------
        fermi-level : the Fermi-level of the system (or two if two different charges are passed)
        """
        if bz is None:
            # Gamma-point only
            from .brillouinzone import BrillouinZone
            bz = BrillouinZone(self)
        else:
            # Overwrite the parent in bz
            bz.set_parent(self)
        # Ensure we are using asarray
        bz.asarray()

        if q is None:
            q = self.geometry.q0
        # Ensure we have an "array" in case of spin-polarized calculations
        q = np.asarray(q)

        if isinstance(distribution, str):
            distribution = get_distribution(distribution)

        # B-cast for easier weights
        w = bz.weight.reshape(-1, 1)

        # Internal class to calculate the Fermi-level
        def _Ef(q, eig):
            # We could reduce it depending on the temperature,
            # however the distribution does not have the kT
            # parameter available.
            Ef = np.average(eig[:, int(q)])

            l_Ef = []
            l_q = []

            def list_append(q, Ef):
                l_q.append(q)
                l_Ef.append(Ef)

            # Calculate guessed charge
            qt = (distribution(eig, mu=Ef) * w).sum()

            while abs(qt - q) > q_tol:
                # Add to cubic-spline
                list_append(qt, Ef)

                # Estimate new Fermi-level
                if len(l_q) > 1:
                    # We can do a spline interpolation
                    lq = np.array(l_q)
                    idx = np.argsort(lq)
                    lEf = np.array(l_Ef)
                    Ef = CubicSpline(lq[idx], lEf[idx], extrapolate=True)(q)
                else:
                    # Update limits
                    if qt > q:
                        Ef = Ef - 0.5
                    elif qt < q:
                        Ef = Ef + 0.5

                # Calculate new guessed charge
                qt = (distribution(eig, mu=Ef) * w).sum()

            return Ef

        if self.spin.is_polarized and q.size == 2:
            # We need to do Fermi-level separately since the user requests
            # separate fillings
            Ef = _a.emptyd(2)
            Ef[0] = _Ef(q[0], bz.eigh(spin=0))
            Ef[1] = _Ef(q[1], bz.eigh(spin=1))
        else:
            # Ensure a single charge
            q = q.sum()
            if self.spin.is_polarized:
                Ef = _Ef(
                    q,
                    np.concatenate(
                        [bz.eigh(spin=0), bz.eigh(spin=1)], axis=1))
            else:
                Ef = _Ef(q, bz.eigh())

        return Ef
示例#14
0
    def __init__(self, parent, nkpt, displacement=None, size=None, centered=True, trs=True):
        super(MonkhorstPack, self).__init__(parent)

        if isinstance(nkpt, Integral):
            nkpt = np.diag([nkpt] * 3)
        elif isinstance(nkpt[0], Integral):
            nkpt = np.diag(nkpt)

        # Now we have a matrix of k-points
        if np.any(nkpt - np.diag(np.diag(nkpt)) != 0):
            raise NotImplementedError(self.__class__.__name__ + " with off-diagonal components is not implemented yet")

        if displacement is None:
            displacement = np.zeros(3, np.float64)
        elif isinstance(displacement, Real):
            displacement = np.zeros(3, np.float64) + displacement

        if size is None:
            size = _a.onesd(3)
        elif isinstance(size, Real):
            size = _a.zerosd(3) + size
        else:
            size = _a.arrayd(size)

        # Retrieve the diagonal number of values
        Dn = np.diag(nkpt).astype(np.int32)
        if np.any(Dn) == 0:
            raise ValueError(self.__class__.__name__ + ' *must* be initialized with '
                             'diagonal elements different from 0.')

        i_trs = -1
        if trs:
            # Figure out which direction to TRS
            nmax = 0
            for i in [0, 1, 2]:
                if displacement[i] in [0., 0.5] and Dn[i] > nmax:
                    nmax = Dn[i]
                    i_trs = i
            if nmax == 1:
                i_trs = -1
            if i_trs == -1:
                # If we still haven't decided (say for weird displacements)
                # simply take the one with the maximum number of k-points.
                i_trs = np.argmax(Dn)

        # Calculate k-points and weights along all directions
        kw = [self.grid(Dn[i], displacement[i], size[i], centered, i == i_trs) for i in (0, 1, 2)]

        self._k = _a.emptyd((kw[0][0].size, kw[1][0].size, kw[2][0].size, 3))
        self._w = _a.onesd(self._k.shape[:-1])
        for i in (0, 1, 2):
            k = kw[i][0].reshape(-1, 1, 1)
            w = kw[i][1].reshape(-1, 1, 1)
            self._k[..., i] = np.rollaxis(k, 0, i + 1)
            self._w[...] *= np.rollaxis(w, 0, i + 1)

        del kw
        self._k.shape = (-1, 3)
        self._k = np.where(self._k > .5, self._k - 1, self._k)
        self._w.shape = (-1,)

        # Store information regarding size and diagonal elements
        # This information is basically only necessary when
        # we want to replace special k-points
        self._diag = Dn # vector
        self._displ = displacement # vector
        self._size = size # vector
        self._centered = centered
        self._trs = i_trs
示例#15
0
    def param_circle(self, sc, N_or_dk, kR, normal, origo, loop=False):
        r""" Create a parameterized k-point list where the k-points are generated on a circle around an origo

        The generated circle is a perfect circle in the reciprocal space (Cartesian coordinates).
        To generate a perfect circle in units of the reciprocal lattice vectors one can
        generate the circle for a diagonal supercell with side-length :math:`2\pi`, see
        example below.

        Parameters
        ----------
        sc : SuperCell, or SuperCellChild
           the supercell used to construct the k-points
        N_or_dk : int
           number of k-points generated using the parameterization (if an integer),
           otherwise it specifies the discretization length on the circle (in 1/Ang),
           If the latter case will use less than 4 points a warning will be raised and
           the number of points increased to 4.
        kR : float
           radius of the k-point. In 1/Ang
        normal : array_like of float
           normal vector to determine the circle plane
        origo : array_like of float
           origo of the circle used to generate the circular parameterization
        loop : bool, optional
           whether the first and last point are equal

        Examples
        --------

        >>> sc = SuperCell([1, 1, 10, 90, 90, 60])
        >>> bz = BrillouinZone.param_circle(sc, 10, 0.05, [0, 0, 1], [1./3, 2./3, 0])

        To generate a circular set of k-points in reduced coordinates (reciprocal

        >>> sc = SuperCell([1, 1, 10, 90, 90, 60])
        >>> bz = BrillouinZone.param_circle(sc, 10, 0.05, [0, 0, 1], [1./3, 2./3, 0])
        >>> bz_rec = BrillouinZone.param_circle(2*np.pi, 10, 0.05, [0, 0, 1], [1./3, 2./3, 0])
        >>> bz.k[:, :] = bz_rec.k[:, :]

        Returns
        -------
        BrillouinZone : with the parameterized k-points.
        """
        if isinstance(N_or_dk, Integral):
            N = N_or_dk
        else:
            # Calculate the required number of points
            N = int(kR ** 2 * np.pi / N_or_dk + 0.5)
            if N < 4:
                N = 4
                info('BrillouinZone.param_circle increased the number of circle points to 4.')

        # Conversion object
        bz = BrillouinZone(sc)

        normal = _a.arrayd(normal)
        origo = _a.arrayd(origo)
        k_n = bz.tocartesian(normal)
        k_o = bz.tocartesian(origo)

        # Generate a preset list of k-points on the unit-circle
        if loop:
            radians = _a.aranged(N) / (N-1) * 2 * np.pi
        else:
            radians = _a.aranged(N) / N * 2 * np.pi
        k = _a.emptyd([N, 3])
        k[:, 0] = np.cos(radians)
        k[:, 1] = np.sin(radians)
        k[:, 2] = 0.

        # Now generate the rotation
        _, theta, phi = cart2spher(k_n)
        if theta != 0:
            pv = _a.arrayd([k_n[0], k_n[1], 0])
            pv /= fnorm(pv)
            q = Quaternion(phi, pv, rad=True) * Quaternion(theta, [0, 0, 1], rad=True)
        else:
            q = Quaternion(0., [0, 0, k_n[2] / abs(k_n[2])], rad=True)

        # Calculate k-points
        k = q.rotate(k)
        k *= kR / fnorm(k).reshape(-1, 1)
        k = bz.toreduced(k + k_o)

        # The sum of weights is equal to the BZ area
        W = np.pi * kR ** 2
        w = np.repeat([W / N], N)

        return BrillouinZone(sc, k, w)
示例#16
0
    def read_geometry(self, ret_dynamic=False):
        r""" Returns Geometry object from the CONTCAR/POSCAR file

        Possibly also return the dynamics (if present).

        Parameters
        ----------
        ret_dynamic : bool, optional
           also return selective dynamics (if present), if not, None will
           be returned.
        """
        sc = self.read_supercell()

        # The species labels are not always included in *CAR
        line1 = self.readline().split()
        opt = self.readline().split()
        try:
            species = line1
            species_count = np.array(opt, np.int32)
        except:
            species_count = np.array(line1, np.int32)
            # We have no species...
            # We default to consecutive elements in the
            # periodic table.
            species = [i + 1 for i in range(len(species_count))]
            err = '\n'.join([
                "POSCAR best format:", "  <Specie-1> <Specie-2>",
                "  <#Specie-1> <#Specie-2>",
                "Format not found, the species are defaulted to the first elements of the periodic table."
            ])
            warn(err)

        # Create list of atoms to be used subsequently
        atom = [
            Atom[spec] for spec, nsp in zip(species, species_count)
            for i in range(nsp)
        ]

        # Number of atoms
        na = len(atom)

        # check whether this is Selective Dynamics
        opt = self.readline()
        if opt[0] in 'Ss':
            dynamics = True
            # pre-create the dynamic list
            dynamic = np.empty([na, 3], dtype=np.bool_)
            opt = self.readline()
        else:
            dynamics = False
            dynamic = None

        # Check whether this is in fractional or direct
        # coordinates (Direct == fractional)
        cart = False
        if opt[0] in 'CcKk':
            cart = True

        xyz = _a.emptyd([na, 3])
        for ia in range(na):
            line = self.readline().split()
            xyz[ia, :] = list(map(float, line[:3]))
            if dynamics:
                dynamic[ia] = list(map(lambda x: x.lower() == 't', line[3:6]))

        if cart:
            # The unit of the coordinates are cartesian
            xyz *= self._scale
        else:
            xyz = xyz.dot(sc.cell)

        # The POT/CONT-CAR does not contain information on the atomic species
        geom = Geometry(xyz=xyz, atom=atom, sc=sc)
        if ret_dynamic:
            return geom, dynamic
        return geom
示例#17
0
文件: bands.py 项目: sofiasanz/sisl
    def read_data(self, as_dataarray=False):
        """ Returns data associated with the bands file

        Parameters
        --------
        as_dataarray: boolean, optional
            if `True`, the information is returned as an `xarray.DataArray`
            Ticks (if read) are stored as an attribute of the DataArray 
            (under `array.ticks` and `array.ticklabels`)
        """
        band_lines = False

        # Luckily the data is in eV
        Ef = float(self.readline())
        # Read the total length of the path (not used)
        _, _ = map(float, self.readline().split())
        l = self.readline()
        try:
            _, _ = map(float, l.split())
            band_lines = True
        except:
            # We are dealing with a band-points file
            pass

        # orbitals, n-spin, n-k
        if band_lines:
            l = self.readline()
        no, ns, nk = map(int, l.split())

        # Create the data to contain all band points
        b = _a.emptyd([nk, ns, no])

        # for band-lines
        if band_lines:
            k = _a.emptyd([nk])
            for ik in range(nk):
                l = [float(x) for x in self.readline().split()]
                k[ik] = l[0]
                del l[0]
                # Now populate the eigenvalues
                while len(l) < ns * no:
                    l.extend([float(x) for x in self.readline().split()])
                l = _a.arrayd(l)
                l.shape = (ns, no)
                b[ik, :, :] = l[:, :] - Ef
            # Now we need to read the labels for the points
            xlabels = []
            labels = []
            nl = int(self.readline())
            for _ in range(nl):
                l = self.readline().split()
                xlabels.append(float(l[0]))
                labels.append((' '.join(l[1:])).replace("'", ''))
            vals = (xlabels, labels), k, b

        else:
            k = _a.emptyd([nk, 3])
            for ik in range(nk):
                l = [float(x) for x in self.readline().split()]
                k[ik, :] = l[0:3]
                del l[2]
                del l[1]
                del l[0]
                # Now populate the eigenvalues
                while len(l) < ns * no:
                    l.extend([float(x) for x in self.readline().split()])
                l = _a.arrayd(l)
                l.shape = (ns, no)
                b[ik, :, :] = l[:, :] - Ef
            vals = k, b

        if as_dataarray:
            from xarray import DataArray

            ticks = {
                "ticks": xlabels,
                "ticklabels": labels
            } if band_lines else {}

            return DataArray(b,
                             name="Energy",
                             attrs=ticks,
                             coords=[("k", k),
                                     ("spin", _a.arangei(0, b.shape[1])),
                                     ("band", _a.arangei(0, b.shape[2]))])

        return vals
def wavefunction(v,
                 grid,
                 geometry=None,
                 k=None,
                 spinor=0,
                 spin=None,
                 eta=False):
    r""" Add the wave-function (`Orbital.psi`) component of each orbital to the grid

    This routine calculates the real-space wave-function components in the
    specified grid.

    This is an *in-place* operation that *adds* to the current values in the grid.

    It may be instructive to check that an eigenstate is normalized:

    >>> grid = Grid(...) # doctest: +SKIP
    >>> psi(state, grid) # doctest: +SKIP
    >>> (np.abs(grid.grid) ** 2).sum() * grid.dvolume == 1. # doctest: +SKIP

    Note: To calculate :math:`\psi(\mathbf r)` in a unit-cell different from the
    originating geometry, simply pass a grid with a unit-cell smaller than the originating
    supercell.

    The wavefunctions are calculated in real-space via:

    .. math::
       \psi(\mathbf r) = \sum_i\phi_i(\mathbf r) |\psi\rangle_i \exp(-i\mathbf k \mathbf R)

    While for non-collinear/spin-orbit calculations the wavefunctions are determined from the
    spinor component (`spinor`)

    .. math::
       \psi_{\alpha/\beta}(\mathbf r) = \sum_i\phi_i(\mathbf r) |\psi_{\alpha/\beta}\rangle_i \exp(-i\mathbf k \mathbf R)

    where ``spinor in [0, 1]`` determines :math:`\alpha` or :math:`\beta`, respectively.

    Notes
    -----
    Currently this method only works for :math:`\Gamma` states

    Parameters
    ----------
    v : array_like
       coefficients for the orbital expansion on the real-space grid.
       If `v` is a complex array then the `grid` *must* be complex as well.
    grid : Grid
       grid on which the wavefunction will be plotted.
       If multiple eigenstates are in this object, they will be summed.
    geometry : Geometry, optional
       geometry where the orbitals are defined. This geometry's orbital count must match
       the number of elements in `v`.
       If this is ``None`` the geometry associated with `grid` will be used instead.
    k : array_like, optional
       k-point associated with wavefunction, by default the inherent k-point used
       to calculate the eigenstate will be used (generally shouldn't be used unless the `EigenstateElectron` object
       has not been created via `Hamiltonian.eigenstate`).
    spinor : int, optional
       the spinor for non-collinear/spin-orbit calculations. This is only used if the
       eigenstate object has been created from a parent object with a `Spin` object
       contained, *and* if the spin-configuration is non-collinear or spin-orbit coupling.
       Default to the first spinor component.
    spin : Spin, optional
       specification of the spin configuration of the orbital coefficients. This only has
       influence for non-collinear wavefunctions where `spinor` choice is important.
    eta : bool, optional
       Display a console progressbar.
    """
    if geometry is None:
        geometry = grid.geometry
        warn(
            'wavefunction was not passed a geometry associated, will use the geometry associated with the Grid.'
        )
    if geometry is None:
        raise SislError(
            'wavefunction did not find a usable Geometry through keywords or the Grid!'
        )

    # In case the user has passed several vectors we sum them to plot the summed state
    if v.ndim == 2:
        v = v.sum(0)

    if spin is None:
        if len(v) // 2 == geometry.no:
            # We can see from the input that the vector *must* be a non-collinear calculation
            v = v.reshape(-1, 2)[:, spinor]
            info(
                'wavefunction assumes the input wavefunction coefficients to originate from a non-collinear calculation!'
            )

    elif spin.kind > Spin.POLARIZED:
        # For non-collinear cases the user selects the spinor component.
        v = v.reshape(-1, 2)[:, spinor]

    if len(v) != geometry.no:
        raise ValueError(
            "wavefunction require wavefunction coefficients corresponding to number of orbitals in the geometry."
        )

    # Check for k-points
    k = _a.asarrayd(k)
    kl = (k**2).sum()**0.5
    has_k = kl > 0.000001
    if has_k:
        raise NotImplementedError(
            'wavefunction for k != Gamma does not produce correct wavefunctions!'
        )

    # Check that input/grid makes sense.
    # If the coefficients are complex valued, then the grid *has* to be
    # complex valued.
    # Likewise if a k-point has been passed.
    is_complex = np.iscomplexobj(v) or has_k
    if is_complex and not np.iscomplexobj(grid.grid):
        raise SislError(
            "wavefunction input coefficients are complex, while grid only contains real."
        )

    if is_complex:
        psi_init = _a.zerosz
    else:
        psi_init = _a.zerosd

    # Extract sub variables used throughout the loop
    shape = _a.asarrayi(grid.shape)
    dcell = grid.dcell
    ic = grid.sc.icell * shape.reshape(1, -1)
    geom_shape = dot(ic, geometry.cell.T).T

    # In the following we don't care about division
    # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state
    old_err = np.seterr(divide='ignore', invalid='ignore')

    addouter = add.outer

    def idx2spherical(ix, iy, iz, offset, dc, R):
        """ Calculate the spherical coordinates from indices """
        rx = addouter(addouter(ix * dc[0, 0], iy * dc[1, 0]),
                      iz * dc[2, 0] - offset[0]).ravel()
        ry = addouter(addouter(ix * dc[0, 1], iy * dc[1, 1]),
                      iz * dc[2, 1] - offset[1]).ravel()
        rz = addouter(addouter(ix * dc[0, 2], iy * dc[1, 2]),
                      iz * dc[2, 2] - offset[2]).ravel()
        # Total size of the indices
        n = rx.shape[0]
        # Reduce our arrays to where the radius is "fine"
        idx = indices_le(rx**2 + ry**2 + rz**2, R**2)
        rx = rx[idx]
        ry = ry[idx]
        rz = rz[idx]
        xyz_to_spherical_cos_phi(rx, ry, rz)
        return n, idx, rx, ry, rz

    # Figure out the max-min indices with a spacing of 1 radian
    rad1 = pi / 180
    theta, phi = ogrid[-pi:pi:rad1, 0:pi:rad1]
    cphi, sphi = cos(phi), sin(phi)
    ctheta_sphi = cos(theta) * sphi
    stheta_sphi = sin(theta) * sphi
    del sphi
    nrxyz = (theta.size, phi.size, 3)
    del theta, phi, rad1

    # First we calculate the min/max indices for all atoms
    idx_mm = _a.emptyi([geometry.na, 2, 3])
    rxyz = _a.emptyd(nrxyz)
    rxyz[..., 0] = ctheta_sphi
    rxyz[..., 1] = stheta_sphi
    rxyz[..., 2] = cphi
    # Reshape
    rxyz.shape = (-1, 3)
    idx = dot(ic, rxyz.T)
    idxm = idx.min(1).reshape(1, 3)
    idxM = idx.max(1).reshape(1, 3)
    del ctheta_sphi, stheta_sphi, cphi, idx, rxyz, nrxyz

    origo = grid.sc.origo.reshape(1, -1)
    for atom, ia in geometry.atom.iter(True):
        if len(ia) == 0:
            continue
        R = atom.maxR()

        # Now do it for all the atoms to get indices of the middle of
        # the atoms
        # The coordinates are relative to origo, so we need to shift (when writing a grid
        # it is with respect to origo)
        xyz = geometry.xyz[ia, :] - origo
        idx = dot(ic, xyz.T).T

        # Get min-max for all atoms
        idx_mm[ia, 0, :] = idxm * R + idx
        idx_mm[ia, 1, :] = idxM * R + idx

    # Now we have min-max for all atoms
    # When we run the below loop all indices can be retrieved by looking
    # up in the above table.

    # Before continuing, we can easily clean up the temporary arrays
    del origo, idx

    aranged = _a.aranged

    # In case this grid does not have a Geometry associated
    # We can *perhaps* easily attach a geometry with the given
    # atoms in the unit-cell
    sc = grid.sc.copy()
    if grid.geometry is None:
        # Create the actual geometry that encompass the grid
        ia, xyz, _ = geometry.within_inf(sc)
        if len(ia) > 0:
            grid.set_geometry(Geometry(xyz, geometry.atom[ia], sc=sc))

    # Instead of looping all atoms in the supercell we find the exact atoms
    # and their supercell indices.
    add_R = _a.zerosd(3) + geometry.maxR()
    # Calculate the required additional vectors required to increase the fictitious
    # supercell by add_R in each direction.
    # For extremely skewed lattices this will be way too much, hence we make
    # them square.
    o = sc.toCuboid(True)
    sc = SuperCell(o._v, origo=o.origo) + np.diag(2 * add_R)
    sc.origo -= add_R

    # Retrieve all atoms within the grid supercell
    # (and the neighbours that connect into the cell)
    IA, XYZ, ISC = geometry.within_inf(sc)

    r_k = dot(geometry.rcell, k)
    r_k_cell = dot(r_k, geometry.cell)
    phase = 1

    # Retrieve progressbar
    eta = tqdm_eta(len(IA), 'wavefunction', 'atom', eta)

    # Loop over all atoms in the grid-cell
    for ia, xyz, isc in zip(IA, XYZ - grid.origo.reshape(1, 3), ISC):
        # Get current atom
        atom = geometry.atom[ia]

        # Extract maximum R
        R = atom.maxR()
        if R <= 0.:
            warn("Atom '{}' does not have a wave-function, skipping atom.".
                 format(atom))
            eta.update()
            continue

        # Get indices in the supercell grid
        idx = (isc.reshape(3, 1) * geom_shape).sum(0)
        idxm = floor(idx_mm[ia, 0, :] + idx).astype(int32)
        idxM = ceil(idx_mm[ia, 1, :] + idx).astype(int32) + 1

        # Fast check whether we can skip this point
        if idxm[0] >= shape[0] or idxm[1] >= shape[1] or idxm[2] >= shape[2] or \
           idxM[0] <= 0 or idxM[1] <= 0 or idxM[2] <= 0:
            eta.update()
            continue

        # Truncate values
        if idxm[0] < 0:
            idxm[0] = 0
        if idxM[0] > shape[0]:
            idxM[0] = shape[0]
        if idxm[1] < 0:
            idxm[1] = 0
        if idxM[1] > shape[1]:
            idxM[1] = shape[1]
        if idxm[2] < 0:
            idxm[2] = 0
        if idxM[2] > shape[2]:
            idxM[2] = shape[2]

        # Now idxm/M contains min/max indices used
        # Convert to spherical coordinates
        n, idx, r, theta, phi = idx2spherical(aranged(idxm[0], idxM[0]),
                                              aranged(idxm[1], idxM[1]),
                                              aranged(idxm[2], idxM[2]), xyz,
                                              dcell, R)

        # Get initial orbital
        io = geometry.a2o(ia)

        if has_k:
            phase = np.exp(-1j * (dot(r_k_cell, isc)))
            # TODO
            # Possibly the phase should be an additional
            # array for the position in the unit-cell!
            #   + np.exp(-1j * dot(r_k, spher2cart(r, theta, np.arccos(phi)).T) )

        # Allocate a temporary array where we add the psi elements
        psi = psi_init(n)

        # Loop on orbitals on this atom, grouped by radius
        for os in atom.iter(True):

            # Get the radius of orbitals (os)
            oR = os[0].R

            if oR <= 0.:
                warn(
                    "Orbital(s) '{}' does not have a wave-function, skipping orbital!"
                    .format(os))
                # Skip these orbitals
                io += len(os)
                continue

            # Downsize to the correct indices
            if R - oR < 1e-6:
                idx1 = idx.view()
                r1 = r.view()
                theta1 = theta.view()
                phi1 = phi.view()
            else:
                idx1 = indices_le(r, oR)
                # Reduce arrays
                r1 = r[idx1]
                theta1 = theta[idx1]
                phi1 = phi[idx1]
                idx1 = idx[idx1]

            # Loop orbitals with the same radius
            for o in os:
                # Evaluate psi component of the wavefunction and add it for this atom
                psi[idx1] += o.psi_spher(r1, theta1, phi1,
                                         cos_phi=True) * (v[io] * phase)
                io += 1

        # Clean-up
        del idx1, r1, theta1, phi1, idx, r, theta, phi

        # Convert to correct shape and add the current atom contribution to the wavefunction
        psi.shape = idxM - idxm
        grid.grid[idxm[0]:idxM[0], idxm[1]:idxM[1], idxm[2]:idxM[2]] += psi

        # Clean-up
        del psi

        # Step progressbar
        eta.update()

    eta.close()

    # Reset the error code for division
    np.seterr(**old_err)