#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() lambda_files = siteUtils.datacatalog_glob('*_lambda_flat_*.fits', testtype='LAMBDA', imgtype='FLAT', description='Lambda files:') mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') # @todo Set correction image when it becomes available. correction_image = None task = sensorTest.PrnuTask() task.run(sensor_id, lambda_files, mask_files, gains, correction_image)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() # Use Fe55 exposures and the overscan region instead of the bias # frames since the vendor data are not guaranteed to have the same # gains for the bias frames. bias_files = siteUtils.datacatalog_glob('*_fe55_fe55_*.fits', testtype="FE55", imgtype="FE55", description='Bias files (using overscan):') gains = eotestUtils.getSensorGains(jobname='fe55_offline') system_noise_files = siteUtils.dependency_glob('noise_*.fits', jobname=siteUtils.getProcessName('system_noise')) if not system_noise_files: system_noise_files = None mask_files = eotestUtils.glob_mask_files() task = sensorTest.ReadNoiseTask() task.run(sensor_id, bias_files, gains, system_noise_files=system_noise_files, mask_files=mask_files, use_overscan=True)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() dark_files = siteUtils.datacatalog_glob('*_dark_dark_*.fits', testtype='DARK', imgtype='DARK', description='Dark files:') mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') task = sensorTest.DarkCurrentTask() task.run(sensor_id, dark_files, mask_files, gains)
#!/usr/bin/env python import os import lsst.eotest.sensor as sensorTest import siteUtils sensor_id = siteUtils.getUnitId() fe55_files = siteUtils.datacatalog_glob('*_fe55_fe55_*.fits', testtype="FE55", imgtype="FE55", description='Fe55 files:') # Roll-off defects mask needs an input file to get the vendor # geometry and will be used for all analyses. rolloff_mask_file = '%s_rolloff_defects_mask.fits' % sensor_id sensorTest.rolloff_mask(fe55_files[0], rolloff_mask_file) task = sensorTest.Fe55Task() task.run(sensor_id, fe55_files, (rolloff_mask_file,), accuracy_req=0.01)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() ccd_vendor = siteUtils.getCcdVendor() flat_files = siteUtils.datacatalog_glob('*_flat*flat?_*.fits', testtype='FLAT', imgtype='FLAT', description='Flat files:') mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') task = sensorTest.FlatPairTask() task.run(sensor_id, flat_files, mask_files, gains) if ccd_vendor == 'ITL': # # Perform linearity analysis using special dataset from ITL try: flat_files = siteUtils.datacatalog_glob('*_linearity_flat*.fits', testtype='LINEARITY', imgtype='FLAT', description='ITL linearity files:') if flat_files: task = sensorTest.LinearityTask() task.run(sensor_id, flat_files, mask_files, gains) except:
#!/usr/bin/env python import os import lsst.eotest.sensor as sensorTest import siteUtils sensor_id = siteUtils.getUnitId() fe55_files = siteUtils.datacatalog_glob('*_fe55_fe55_*.fits', testtype="FE55", imgtype="FE55", description='Fe55 files:') # Roll-off defects mask needs an input file to get the vendor # geometry and will be used for all analyses. rolloff_mask_file = '%s_rolloff_defects_mask.fits' % sensor_id sensorTest.rolloff_mask(fe55_files[0], rolloff_mask_file) task = sensorTest.Fe55Task() task.run(sensor_id, fe55_files, (rolloff_mask_file, ), accuracy_req=0.01)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() sflat_files = siteUtils.datacatalog_glob('*_sflat_500_flat_H*.fits', testtype='SFLAT_500', imgtype='FLAT', description='Superflat files:') mask_files = eotestUtils.glob_mask_files() task = sensorTest.DarkPixelsTask() task.run(sensor_id, sflat_files, mask_files)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() gains = eotestUtils.getSensorGains(jobname='fe55_offline') sflat_high_files = siteUtils.datacatalog_glob('*_sflat_500_flat_H*.fits', testtype='SFLAT_500', imgtype='FLAT', description='Superflat high files:') task = sensorTest.CteTask() task.run(sensor_id, sflat_high_files, flux_level='high', gains=gains) sflat_low_files = siteUtils.datacatalog_glob('*_sflat_500_flat_L*.fits', testtype='SFLAT_500', imgtype='FLAT', description='Superflat low files:') task = sensorTest.CteTask() task.run(sensor_id, sflat_low_files, flux_level='low', gains=gains)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() # Use Fe55 exposures and the overscan region instead of the bias # frames since the vendor data are not guaranteed to have the same # gains for the bias frames. bias_files = siteUtils.datacatalog_glob( '*_fe55_fe55_*.fits', testtype="FE55", imgtype="FE55", description='Bias files (using overscan):') gains = eotestUtils.getSensorGains(jobname='fe55_offline') system_noise_files = siteUtils.dependency_glob( 'noise_*.fits', jobname=siteUtils.getProcessName('system_noise')) if not system_noise_files: system_noise_files = None mask_files = eotestUtils.glob_mask_files() task = sensorTest.ReadNoiseTask() task.run(sensor_id, bias_files, gains, system_noise_files=system_noise_files, mask_files=mask_files, use_overscan=True)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() ccd_vendor = siteUtils.getCcdVendor() flat_files = siteUtils.datacatalog_glob('*_flat*flat?_*.fits', testtype='FLAT', imgtype='FLAT', description='Flat files:') mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') task = sensorTest.FlatPairTask() task.run(sensor_id, flat_files, mask_files, gains) if ccd_vendor == 'ITL': # # Perform linearity analysis using special dataset from ITL try: flat_files = siteUtils.datacatalog_glob( '*_linearity_flat*.fits', testtype='LINEARITY', imgtype='FLAT', description='ITL linearity files:') if flat_files: task = sensorTest.LinearityTask() task.run(sensor_id, flat_files, mask_files, gains)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() flat_files = siteUtils.datacatalog_glob('*_flat*flat?_*.fits', testtype='FLAT', imgtype='FLAT', description='Flat files:') mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') task = sensorTest.PtcTask() task.run(sensor_id, flat_files, mask_files, gains)
#!/usr/bin/env python import lsst.eotest.sensor as sensorTest import siteUtils import eotestUtils sensor_id = siteUtils.getUnitId() trap_file = siteUtils.datacatalog_glob('*_trap_ppump_*.fits', testtype='TRAP', imgtype='PPUMP', description='Trap file:')[0] mask_files = eotestUtils.glob_mask_files() gains = eotestUtils.getSensorGains(jobname='fe55_offline') task = sensorTest.TrapTask() task.run(sensor_id, trap_file, mask_files, gains)