def main(): stations = 'PB03 PB04' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-01-01') t1 = UTC('2007-11-10') t2 = UTC() t2 = UTC('2007-11-20') shift = 500 correlations = get_correlations(stations, components, stations2, only_cross=True) method = 'filter4-6_water_env2_whitening_1bit' # method = 'filter0.01-1_1bit_whitening0.01' # method = 'filter0.005_rm20' # method = 'filter0.005_1bit' data = IPOC(xcorr_append='/Tocopilla/tests/' + method, use_local_LVC=True) data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, component=components, # filter=(4, 6), downsample=None, # eventremoval='waterlevel_env2', param_removal=(10, 0), # #whitening=True, # normalize='1bit', param_norm=None) correlations = get_correlations(stations, components, stations2, only_auto=True) # noisexcorr(data, correlations, t1, t2, shift) plotXcorrs(data, correlations, t1, t2, start= -150, end=150, plot_overview=True, plot_years=False, use_dlognorm=True, plot_stack=True, plot_psd=True, add_to_title=method, show=True)
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 HMBCX MNMCX PATCX PSGCX' components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-07-01') t2 = UTC('2008-12-31') shift = 500 correlations = get_correlations(stations, components) method = 'FINAL_filter0.005-10_1bit_Tocopilla' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) pool = Pool() prepare(data, stations.split(), t1, t2, component=components, filter=(0.005, 10, 2, True), downsample=20, whitening=False, normalize='1bit', param_norm=None, pool=pool) noisexcorrf(data, correlations, t1, t2, shift, pool=pool) pool.close() pool.join() stack(data, correlations, dt=10 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt= -1) filters = None #filters = getFilters((0.005, 0.01, 0.1, 1, 5, 10), zerophase=True, corners=2) # plotXcorrs(data, correlations, t1, t2, start=None, end=None, filters=filters, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=True, add_to_title='', downsample=None) plotXcorrs(data, correlations, t1=None, t2=None, start=None, end=None, filters=filters, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=True, add_to_title='', downsample=None, stack=('10days', '5days'))
def main(): stations = 'PB01 PB02 PB03 PB04 PB04 PB05 PB06' stations2 = 'PB01 PB02 PB03 PB04 PB04 PB05 PB06 PB07 PB08 HMBCX PATCX' components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2007-09-01') t2 = UTC('2008-01-31') shift = 200 correlations = get_correlations(stations, components, stations2) # method = 'filter0.01-1_1bit' # method = 'filter0.01-1_1bit_whitening0.01' # method = 'filter2-20_1bit' # method = 'filter0.005_1bit' # period = 'day' # # data = IPOC(xcorr_append='/Tocopilla/' + method, use_local_LVC=True) # data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, filter=(0.005, 1.), downsample=5, whitening=True, # component=components, normalize='1bit', norm_param=None) # noisexcorr(data, correlations, t1, t2, shift_sec=shift, period=period) # correlations = (('PB03Z', 'PB04Z'),) # data.x_plot_day = data.x_res + '/plots2/%s_day_%s' # plotXcorrs(data, correlations, t1, t2, start=9, end=15, plot_overview=True, filter=(2, None, 2, True), stack_lim=(-0.01, 0.01), downsample=None, plot_years=False, # plot_stack=True, plot_psd=True, add_to_title=method + '_filter2_9-15', add_to_file='_filter2_9-15.png', show=False) method = 'filter4-6_1bit' period = 'day' data = IPOC(xcorr_append='/Tocopilla/' + method, use_local_LVC=True) data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, filter=(4, 6), downsample=None, whitening=None, # component=components, normalize='1bit', norm_param=None) # noisexcorr(data, correlations, t1, t2, shift_sec=shift, period=period) plotXcorrs(data, correlations, t1, t2, start=-50, end=50, plot_overview=True, filter=None, stack_lim=(-0.1, 0.1), plot_years=False, plot_stack=True, plot_psd=False, add_to_title=method + '_wodlognorm_50s', add_to_file='_wodlognorm_50s.png', show=True, landscape=True, use_dlognorm=False)
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 HMBCX MNMCX PATCX PSGCX LVC' stations = 'PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16' stations = 'PB02 PB03 PB04 PB05 HMBCX MNMCX PSGCX' stations = 'PATCX' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2007-01-01') #t1 = UTC('2007-12-01') #t2 = UTC('2008-12-31') #t2 = UTC('2012-10-01') t2 = UTC('2011-12-31') #t2 = UTC('2007-02-03') # t1 = UTC('2009-05-01') # t2 = UTC('2009-05-03') shift = 100 shift = 60 correlations = get_correlations(stations, components, stations2, only_auto=True) #correlations = get_correlations(stations, components, stations2) print correlations method = 'FINAL_filter4-6_1bit_auto' method = 'FINAL_filter4-6_1bit_auto_3C' method = 'FINAL_filter4-6_1bit_auto_hour2' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) # pool = Pool() pool = None prepare(data, stations.split(), t1, t2, component=components, filter=(4, 6, 2, True), downsample=50, eventremoval='waterlevel_env2', param_removal=(10, 0), whitening=False, normalize='1bit', param_norm=None, pool=pool, discard=0.1 * 24 * 3600, freq_domain=False, trim='day') noisexcorrf(data, correlations, t1, t2, shift, period=3600, pool=pool, overlap=1800) # noisexcorrf(data, correlations, t1, t2, shift, period=5 * 60, pool=pool, # max_preload=1000) # pool.close() # pool.join() # plotXcorrs(data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=False, add_to_title='', downsample=None) plotXcorrs(data, correlations, t1, t2, start= -20, end=20, plot_overview=True, plot_years=True, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, ext='_hg.png', vmax=0.1, period=3600)
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 HMBCX MNMCX PATCX PSGCX' components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-07-01') t2 = UTC('2008-12-31') shift = 500 correlations = get_correlations(stations, components) method = 'FINAL_filter0.005-10_1bit_Tocopilla' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) pool = Pool() prepare(data, stations.split(), t1, t2, component=components, filter=(0.005, 10, 2, True), downsample=20, whitening=False, normalize='1bit', param_norm=None, pool=pool) noisexcorrf(data, correlations, t1, t2, shift, pool=pool) pool.close() pool.join() stack(data, correlations, dt=10 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt=-1) filters = None #filters = getFilters((0.005, 0.01, 0.1, 1, 5, 10), zerophase=True, corners=2) # plotXcorrs(data, correlations, t1, t2, start=None, end=None, filters=filters, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=True, add_to_title='', downsample=None) plotXcorrs(data, correlations, t1=None, t2=None, start=None, end=None, filters=filters, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=True, add_to_title='', downsample=None, stack=('10days', '5days'))
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 HMBCX MNMCX PATCX PSGCX LVC' #stations = 'PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-02-01') t2 = UTC('2012-10-01') shift = 100 correlations = get_correlations(stations, components, stations2, only_auto=True) method = 'FINAL_filter1-3_1bit_auto' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) # pool = Pool() # prepare(data, stations.split(), t1, t2, component=components, # filter=(1, 3, 2, True), downsample=20, # eventremoval='waterlevel_env2', param_removal=(10, 0), # whitening=False, # normalize='1bit', param_norm=None, # pool=pool) # noisexcorrf(data, correlations, t1, t2, shift, pool=pool) # pool.close() # pool.join() # plotXcorrs(data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=False, add_to_title='', downsample=None) plt.rc('font', size=16) plotXcorrs(data, correlations, t1, t2, start=0, end=20, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, downsample=None, ext='_hg_dis.pdf', vmax=0.1, ylabel=None, add_to_title='1-3Hz')
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 HMBCX MNMCX PATCX PSGCX LVC' stations = 'PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16' stations = 'PATCX' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2007-10-01') t2 = UTC('2007-11-30') #t2 = UTC('2012-10-01') #t2 = UTC('2011-12-31') # t1 = UTC('2009-05-01') # t2 = UTC('2009-05-03') shift = 100 shift = 60 #correlations = get_correlations(stations, components, stations2, only_auto=True) correlations = get_correlations(stations, components, stations2) print correlations method = 'zerotest_nozero' #method = 'FINAL_filter4-6_1bit_auto_3C' #method = 'FINAL_filter3-5' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) pool = Pool() prepare(data, stations.split(), t1, t2, component=components, filter=(4, 6, 2, True), downsample=50, #eventremoval='waterlevel_env2', param_removal=(10, 0), eventremoval=None, param_removal=None, whitening=False, normalize='1bit', param_norm=None, pool=pool) noisexcorrf(data, correlations, t1, t2, shift, period=24 * 3600, pool=pool) # noisexcorrf(data, correlations, t1, t2, shift, period=5 * 60, pool=pool, # max_preload=1000) pool.close() pool.join() # plotXcorrs(data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=False, add_to_title='', downsample=None) #plt.rc('font', size=16) plotXcorrs(data, correlations, t1, t2, start=-20, end=20, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, downsample=None, ext='_hg0.02_dis.pdf', vmax=0.02, add_to_title='4-6Hz', ylabel=None)
def main(): stations = 'PB03 PB04' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-01-01') t1 = UTC('2007-11-10') t2 = UTC() t2 = UTC('2007-11-20') shift = 500 correlations = get_correlations(stations, components, stations2, only_cross=True) method = 'filter4-6_water_env2_whitening_1bit' # method = 'filter0.01-1_1bit_whitening0.01' # method = 'filter0.005_rm20' # method = 'filter0.005_1bit' data = IPOC(xcorr_append='/Tocopilla/tests/' + method, use_local_LVC=True) data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, component=components, # filter=(4, 6), downsample=None, # eventremoval='waterlevel_env2', param_removal=(10, 0), # #whitening=True, # normalize='1bit', param_norm=None) correlations = get_correlations(stations, components, stations2, only_auto=True) # noisexcorr(data, correlations, t1, t2, shift) plotXcorrs(data, correlations, t1, t2, start=-150, end=150, plot_overview=True, plot_years=False, use_dlognorm=True, plot_stack=True, plot_psd=True, add_to_title=method, show=True)
def main(): stations = 'PB01 PB02 PB03 PB04 PB04 PB05 PB06' stations2 = 'PB01 PB02 PB03 PB04 PB04 PB05 PB06 PB07 PB08 HMBCX PATCX' components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2007-09-01') t2 = UTC('2008-01-31') shift = 200 correlations = get_correlations(stations, components, stations2) # method = 'filter0.01-1_1bit' # method = 'filter0.01-1_1bit_whitening0.01' # method = 'filter2-20_1bit' # method = 'filter0.005_1bit' # period = 'day' # # data = IPOC(xcorr_append='/Tocopilla/' + method, use_local_LVC=True) # data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, filter=(0.005, 1.), downsample=5, whitening=True, # component=components, normalize='1bit', norm_param=None) # noisexcorr(data, correlations, t1, t2, shift_sec=shift, period=period) # correlations = (('PB03Z', 'PB04Z'),) # data.x_plot_day = data.x_res + '/plots2/%s_day_%s' # plotXcorrs(data, correlations, t1, t2, start=9, end=15, plot_overview=True, filter=(2, None, 2, True), stack_lim=(-0.01, 0.01), downsample=None, plot_years=False, # plot_stack=True, plot_psd=True, add_to_title=method + '_filter2_9-15', add_to_file='_filter2_9-15.png', show=False) method = 'filter4-6_1bit' period = 'day' data = IPOC(xcorr_append='/Tocopilla/' + method, use_local_LVC=True) data.setXLogger('_' + method) # prepare(data, stations.split(), t1, t2, filter=(4, 6), downsample=None, whitening=None, # component=components, normalize='1bit', norm_param=None) # noisexcorr(data, correlations, t1, t2, shift_sec=shift, period=period) plotXcorrs(data, correlations, t1, t2, start= -50, end=50, plot_overview=True, filter=None, stack_lim=(-0.1, 0.1), plot_years=False, plot_stack=True, plot_psd=False, add_to_title=method + '_wodlognorm_50s', add_to_file='_wodlognorm_50s.png', show=True, landscape=True, use_dlognorm=False)
def main(): data = IPOC(xcorr_append='/tests/1bit_filter0.1-1', use_local_LVC=True) data.setXLogger('_1bit') stations = 'PB01 PB03' stations2 = 'PB03' components = 'Z' t1 = UTC('2010-01-01') t2 = UTC('2010-12-31') shift = 500 prepare(data, stations.split(), t1, t2, filter=(0.1, 1.), downsample=10, component=components, normalize='1bit', param_norm=None, use_floating_stream=True) correlations = get_correlations(stations, components, stations2) xcorr_day(data, correlations, t1, t2, shift, use_floating_stream=True) plotXcorrs(data, correlations, t1, t2)
def main(): data = IPOC(xcorr_append='/tests/1bit_filter0.01', use_local_LVC=True) data.setXLogger('_1bit0.01Hz') stations = 'PB01 PB03' stations2 = 'PB03' components = 'Z' t1 = UTC('2010-01-01') t2 = UTC('2010-01-02') shift = 500 # prepare(data, stations.split(), t1, t2, filter=(0.01, None), downsample=None, # component=components, normalize='1bit', norm_param=None, # use_floating_stream=True) correlations = get_correlations(stations, components, stations2) # xcorr_day(data, correlations, t1, t2, shift, use_floating_stream=True) plotXcorrs(data, correlations, t1, t2, plot_overview=False, plot_stack=True, plot_psd=True)
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16 HMBCX MNMCX PATCX PSGCX LVC' stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-02-01') t2 = UTC('2012-10-01') shift = 500 correlations = get_correlations(stations, components, stations2, only_auto=True) method = 'FINAL_filter0.01-0.5_1bit_auto' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) # pool = Pool() # prepare(data, stations.split(), t1, t2, component=components, # filter=(0.01, 0.5, 2, True), downsample=5, # eventremoval='waterlevel_env2', param_removal=(10, 0), # whitening=False, # normalize='1bit', param_norm=None, # pool=pool) # noisexcorrf(data, correlations, t1, t2, shift, pool=pool) # pool.close() # pool.join() # plotXcorrs(data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=False, add_to_title='', downsample=None) plotXcorrs(data, correlations, t1, t2, start=0, end=200, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, ext='_hg.png', vmax=0.1) # stack(data, correlations, dt= -1) # stack(data, correlations, dt=10 * 24 * 3600, shift=2 * 24 * 3600) # plotXcorrs(data, correlations, t1=None, t2=None, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, # plot_stack=True, plot_psd=False, add_to_title='', downsample=None, # stack=('10days', '2days')) plotXcorrs(data, correlations, t1=None, t2=None, start=0, end=200, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, stack=('10days', '2days'), ext='_hg.png', vmax=0.1)
def main(): #stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16 HMBCX MNMCX PATCX PSGCX LVC TAIQ' stations = 'PB01 PB02 PB03 PB04 PB05' stations2 = None components = 'Z' # TOcopilla earthquake: #t_Toco=UTC('2007-11-14 15:14:00') t1 = UTC('2006-01-01') #t2 = UTC('2011-09-01') #t1 = UTC('2007-01-01') #t2 = UTC('2009-01-01') t2 = UTC('2012-01-01') shift = 500 correlations = get_correlations(stations, components, stations2, only_cross=True) # method = 'FINAL_filter0.005-5_1bit_whitening_2011+2012' # method = 'filter0.01-1_1bit_whitening0.01' # method = 'filter0.005_rm20' # method = 'filter0.005_1bit' method = 'filter0.01-1_water_env2_whitening_1bit_fft' data = IPOC(xcorr_append='/Tocopilla/' + method, use_local_LVC=False) data.setXLogger('_' + method) # pool = Pool() # prepare(data, stations.split(), t1, t2, component=components, # filter=(0.005, 5, 2, True), downsample=20, ## filter=(1, 10), downsample=None, ## eventremoval=None, #'waterlevel_env2', param_removal=(10, 0), # whitening=True, # use_this_filter_after_whitening=(0.005, 5, 2), # normalize='1bit', param_norm=None, # pool=pool) # noisexcorrf(data, correlations, t1, t2, shift, pool=pool) # pool.close() # pool.join() # # stack(data, correlations, dt=10 * 24 * 3600, shift=5 * 24 * 3600) # stack(data, correlations, dt= -1) t1p, t2p = t1, t2 # t1p, t2p = None, None filters = None filters = getFilters((0.025, 0.05, 0.1, 0.25, 0.5, 1)) plotXcorrs(data, correlations, t1=t1p, t2=t2p, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, filters=filters, filter_now=False) plotXcorrs(data, correlations, t1=t1p, t2=t2p, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, stack=('10days', 'day'), filters=filters, filter_now=False) plotXcorrs(data, correlations, t1=t1p, t2=t2p, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, stack=('50days', '5days'), filters=filters, filter_now=False)
def main(): stations = 'PB01 PB03' stations2 = 'PB03' components = 'Z' t1 = UTC('2010-01-01') t2 = UTC('2010-12-31') shift = 500 correlations = get_correlations(stations, components, stations2) method = 'filter0.1-1_1bit_whitening0.01' data = IPOC(xcorr_append='/tests/' + method, use_local_LVC=True) data.setXLogger('_' + method) prepare(data, stations.split(), t1, t2, filter=(0.1, 1), downsample=10, whitening=0.01, component=components, normalize='1bit', param_norm=None, use_floating_stream=True) xcorr_day(data, correlations, t1, t2, shift, use_floating_stream=True) plotXcorrs(data, correlations, t1, t2, plot_overview=False, plot_stack=True, plot_psd=True, add_to_title=method) method = 'filter0.1-1_1bit_whitening0.001' data = IPOC(xcorr_append='/tests/' + method, use_local_LVC=True) data.setXLogger('_' + method) prepare(data, stations.split(), t1, t2, filter=(0.1, 1), downsample=10, whitening=0.001, component=components, normalize='1bit', param_norm=None, use_floating_stream=True) xcorr_day(data, correlations, t1, t2, shift, use_floating_stream=True) plotXcorrs(data, correlations, t1, t2, plot_overview=False, plot_stack=True, plot_psd=True, add_to_title=method) method = 'filter0.1-1_1bit_whitening0.1' data = IPOC(xcorr_append='/tests/' + method, use_local_LVC=True) data.setXLogger('_' + method) prepare(data, stations.split(), t1, t2, filter=(0.1, 1), downsample=10, whitening=0.1, component=components, normalize='1bit', param_norm=None, use_floating_stream=True) xcorr_day(data, correlations, t1, t2, shift, use_floating_stream=True) plotXcorrs(data, correlations, t1, t2, plot_overview=False, plot_stack=True, plot_psd=True, add_to_title=method)
def main(): stations = 'PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16 HMBCX MNMCX PATCX PSGCX LVC' # TAIQ stations2 = None components = 'Z' # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC('2006-01-01') #t2 = UTC('2011-09-01') #t1 = UTC('2007-01-01') #t2 = UTC('2009-01-01') t2 = UTC('2012-09-01') shift = 500 correlations = get_correlations(stations, components, stations2) method = 'FINAL_filter0.01-1_1bit' data = IPOC(xcorr_append='/' + method, use_local_LVC=False) data.setXLogger('_' + method) pool = Pool() prepare(data, stations.split(), t1, t2, component=components, filter=(0.01, 1, 2, True), downsample=10, eventremoval='waterlevel_env2', param_removal=(10, 0), whitening=False, normalize='1bit', param_norm=None, pool=pool) noisexcorrf(data, correlations, t1, t2, shift, pool=pool) pool.close() pool.join() stack(data, correlations, dt=10 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt=50 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt=-1) plotXcorrs(data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None) plotXcorrs(data, correlations, t1=None, t2=None, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, stack=('10days', '5days')) plotXcorrs(data, correlations, t1=None, t2=None, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title='', downsample=None, stack=('50days', '5days'))
def main(): stations = ( "PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16 HMBCX MNMCX PATCX PSGCX LVC" ) # TAIQ stations2 = None components = "Z" # TOcopilla earthquake: 2007-11-14 15:14 t1 = UTC("2006-01-01") # t2 = UTC('2011-09-01') # t1 = UTC('2007-01-01') # t2 = UTC('2009-01-01') t2 = UTC("2012-09-01") shift = 500 correlations = get_correlations(stations, components, stations2) method = "FINAL_filter0.01-1_1bit" data = IPOC(xcorr_append="/" + method, use_local_LVC=False) data.setXLogger("_" + method) pool = Pool() prepare( data, stations.split(), t1, t2, component=components, filter=(0.01, 1, 2, True), downsample=10, eventremoval="waterlevel_env2", param_removal=(10, 0), whitening=False, normalize="1bit", param_norm=None, pool=pool, ) noisexcorrf(data, correlations, t1, t2, shift, pool=pool) pool.close() pool.join() stack(data, correlations, dt=10 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt=50 * 24 * 3600, shift=5 * 24 * 3600) stack(data, correlations, dt=-1) plotXcorrs( data, correlations, t1, t2, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title="", downsample=None, ) plotXcorrs( data, correlations, t1=None, t2=None, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title="", downsample=None, stack=("10days", "5days"), ) plotXcorrs( data, correlations, t1=None, t2=None, start=None, end=None, plot_overview=True, plot_years=False, use_dlognorm=False, plot_stack=True, plot_psd=False, add_to_title="", downsample=None, stack=("50days", "5days"), )