def __init__(self, gym_env: gym.Env, set_state: Callable[[gym.Env, D.T_memory[D.T_state]], None] = None, get_state: Callable[[gym.Env], D.T_memory[D.T_state]] = None, continuous_feature_fidelity: int = 1, discretization_factor: int = 10, branching_factor: int = None, max_depth: int = None) -> None: """Initialize GymRIWDomain. # Parameters gym_env: The deterministic Gym environment (gym.env) to wrap. set_state: Function to call to set the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state get_state: Function to call to get the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state continuous_feature_fidelity: Number of integers to represent a continuous feature in the interval-based feature abstraction (higher is more precise) discretization_factor: Number of discretized action variable values per continuous action variable branching_factor: if not None, sample branching_factor actions from the resulting list of discretized actions max_depth: maximum depth of states to explore from the initial state """ GymDomainHashable.__init__(self, gym_env=gym_env) GymDiscreteActionDomain.__init__(self, discretization_factor=discretization_factor, branching_factor=branching_factor) GymWidthDomain.__init__(self, continuous_feature_fidelity=continuous_feature_fidelity) gym_env._max_episode_steps = max_depth self._max_depth = max_depth self._current_depth = 0 self._cumulated_reward = 0 self._continuous_feature_fidelity = continuous_feature_fidelity self._map = None self._path = None self._must_reset_features = True
def __init__( self, gym_env: gym.Env, discretization_factor: int = 10, branching_factor: int = None, max_depth: int = None, ) -> None: """Initialize GymRIWDomain. # Parameters gym_env: The deterministic Gym environment (gym.env) to wrap. discretization_factor: Number of discretized action variable values per continuous action variable branching_factor: if not None, sample branching_factor actions from the resulting list of discretized actions max_depth: maximum depth of states to explore from the initial state """ GymDomain.__init__(self, gym_env=gym_env) GymDiscreteActionDomain.__init__( self, discretization_factor=discretization_factor, branching_factor=branching_factor, ) gym_env._max_episode_steps = max_depth self.current_outcome = None self._map = None self._path = None
def __init__(self, gym_env: gym.Env, set_state: Callable[[gym.Env, D.T_memory[D.T_state]], None] = None, get_state: Callable[[gym.Env], D.T_memory[D.T_state]] = None, discretization_factor: int = 10, branching_factor: int = None, horizon: int = 1000) -> None: """Initialize GymRIWDomain. # Parameters gym_env: The deterministic Gym environment (gym.env) to wrap. set_state: Function to call to set the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state get_state: Function to call to get the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state discretization_factor: Number of discretized action variable values per continuous action variable branching_factor: if not None, sample branching_factor actions from the resulting list of discretized actions horizon: maximum number of steps allowed for the gym environment """ DeterministicGymDomain.__init__(self, gym_env=gym_env, set_state=set_state, get_state=get_state) GymDiscreteActionDomain.__init__( self, discretization_factor=discretization_factor, branching_factor=branching_factor) gym_env._max_episode_steps = horizon self._map = None self._path = None
def __init__(self, gym_env: gym.Env, set_state: Callable[[gym.Env, D.T_memory[D.T_state]], None] = None, get_state: Callable[[gym.Env], D.T_memory[D.T_state]] = None, termination_is_goal: bool = True, continuous_feature_fidelity: int = 1, discretization_factor: int = 3, branching_factor: int = None, max_depth: int = 50) -> None: GymPlanningDomain.__init__(self, gym_env=gym_env, set_state=set_state, get_state=get_state, termination_is_goal=termination_is_goal, max_depth=max_depth) GymDiscreteActionDomain.__init__(self, discretization_factor=discretization_factor, branching_factor=branching_factor) GymWidthDomain.__init__(self, continuous_feature_fidelity=continuous_feature_fidelity) gym_env._max_episode_steps = max_depth
def __init__(self, gym_env: gym.Env, set_state: Callable[[gym.Env, D.T_memory[D.T_state]], None] = None, get_state: Callable[[gym.Env], D.T_memory[D.T_state]] = None, termination_is_goal: bool = True, continuous_feature_fidelity: int = 1, discretization_factor: int = 3, branching_factor: int = None, max_depth: int = 50) -> None: """Initialize GymIWDomain. # Parameters gym_env: The deterministic Gym environment (gym.env) to wrap. set_state: Function to call to set the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state get_state: Function to call to get the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state termination_is_goal: True if the termination condition is a goal (and not a dead-end) continuous_feature_fidelity: Number of integers to represent a continuous feature in the interval-based feature abstraction (higher is more precise) discretization_factor: Number of discretized action variable values per continuous action variable branching_factor: if not None, sample branching_factor actions from the resulting list of discretized actions max_depth: maximum depth of states to explore from the initial state """ GymPlanningDomain.__init__(self, gym_env=gym_env, set_state=set_state, get_state=get_state, termination_is_goal=termination_is_goal, max_depth=max_depth) GymDiscreteActionDomain.__init__( self, discretization_factor=discretization_factor, branching_factor=branching_factor) GymWidthDomain.__init__( self, continuous_feature_fidelity=continuous_feature_fidelity) gym_env._max_episode_steps = max_depth