def test_radius_outlier_functional_response(self): knnr = RadiusNeighborsRegressor(radius=0.001) knnr.fit(self.X[3:6], self.X[3:6]) # No value given with np.testing.assert_raises(ValueError): knnr.predict(self.X[:10]) # Test response knnr = RadiusNeighborsRegressor(radius=0.001, outlier_response=self.X[0]) knnr.fit(self.X[:6], self.X[:6]) res = knnr.predict(self.X[:7]) np.testing.assert_array_almost_equal(self.X[0].data_matrix, res[6].data_matrix)
def test_radius_functional_response(self): knnr = RadiusNeighborsRegressor(metric=lp_distance, weights='distance', regressor=l2_mean) knnr.fit(self.X, self.X) res = knnr.predict(self.X) np.testing.assert_array_almost_equal(res.data_matrix, self.X.data_matrix)
def test_predict_regressor(self): """Test scalar regression, predics mode location""" # Dummy test, with weight = distance, only the sample with distance 0 # will be returned, obtaining the exact location knnr = KNeighborsRegressor(weights='distance') rnnr = RadiusNeighborsRegressor(weights='distance', radius=.1) knnr.fit(self.X, self.modes_location) rnnr.fit(self.X, self.modes_location) np.testing.assert_array_almost_equal(knnr.predict(self.X), self.modes_location) np.testing.assert_array_almost_equal(rnnr.predict(self.X), self.modes_location)