示例#1
0
def fisher_score(X, y):
    """
    This function implements the fisher score feature selection, steps are as follows:
    1. Construct the affinity matrix W in fisher score way
    2. For the r-th feature, we define fr = X(:,r), D = diag(W*ones), ones = [1,...,1]', L = D - W
    3. Let fr_hat = fr - (fr'*D*ones)*ones/(ones'*D*ones)
    4. Fisher score for the r-th feature is score = (fr_hat'*D*fr_hat)/(fr_hat'*L*fr_hat)-1

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    y: {numpy array}, shape (n_samples,)
        input class labels

    Output
    ------
    score: {numpy array}, shape (n_features,)
        fisher score for each feature

    Reference
    ---------
    He, Xiaofei et al. "Laplacian Score for Feature Selection." NIPS 2005.
    Duda, Richard et al. "Pattern classification." John Wiley & Sons, 2012.
    """

    # Construct weight matrix W in a fisherScore way
    kwargs = {"neighbor_mode": "supervised", "fisher_score": True, 'y': y}
    W = construct_w(X, **kwargs)

    # build the diagonal D matrix from affinity matrix W
    D = np.array(W.sum(axis=1))
    L = W
    tmp = np.dot(np.transpose(D), X)
    D = diags(np.transpose(D), [0])
    Xt = np.transpose(X)
    t1 = np.transpose(np.dot(Xt, D.todense()))
    t2 = np.transpose(np.dot(Xt, L.todense()))
    # compute the numerator of Lr
    D_prime = np.sum(np.multiply(t1, X), 0) - old_div(np.multiply(tmp, tmp), D.sum())
    # compute the denominator of Lr
    L_prime = np.sum(np.multiply(t2, X), 0) - old_div(np.multiply(tmp, tmp), D.sum())
    # avoid the denominator of Lr to be 0
    D_prime[D_prime < 1e-12] = 10000
    lap_score = 1 - np.array(np.multiply(L_prime, old_div(1, D_prime)))[0, :]

    # compute fisher score from laplacian score, where fisher_score = 1/lap_score - 1
    score = old_div(1.0, lap_score) - 1
    return np.transpose(score)
示例#2
0
def mcfs(X, n_selected_features, W=None, n_clusters=5, **kwargs):
    """
    This function implements unsupervised feature selection for multi-cluster data.

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    n_selected_features: {int}
        number of features to select
    kwargs: {dictionary}
        W: {sparse matrix}, shape (n_samples, n_samples)
            affinity matrix
        n_clusters: {int}
            number of clusters (default is 5)

    Output
    ------
    W: {numpy array}, shape(n_features, n_clusters)
        feature weight matrix

    Reference
    ---------
    Cai, Deng et al. "Unsupervised Feature Selection for Multi-Cluster Data." KDD 2010.
    """

    # use the default affinity matrix
    if not W:
        W = construct_w(X)

    # solve the generalized eigen-decomposition problem and get the top K
    # eigen-vectors with respect to the smallest eigenvalues
    W = W.toarray()
    W = old_div((W + W.T), 2)
    W_norm = np.diag(np.sqrt(old_div(1, W.sum(1))))
    W = np.dot(W_norm, np.dot(W, W_norm))
    WT = W.T
    W[W < WT] = WT[W < WT]
    eigen_value, ul = scipy.linalg.eigh(a=W)
    Y = np.dot(W_norm, ul[:, -1 * n_clusters - 1:-1])

    # solve K L1-regularized regression problem using LARs algorithm with cardinality constraint being d
    n_sample, n_feature = X.shape
    W = np.zeros((n_feature, n_clusters))
    for i in range(n_clusters):
        clf = linear_model.Lars(n_nonzero_coefs=n_selected_features)
        clf.fit(X, Y[:, i])
        W[:, i] = clf.coef_
    return W
示例#3
0
def lap_score(X, W=None, **kwargs):
    """
    This function implements the laplacian score feature selection, steps are as follows:
    1. Construct the affinity matrix W if it is not specified
    2. For the r-th feature, we define fr = X(:,r), D = diag(W*ones), ones = [1,...,1]', L = D - W
    3. Let fr_hat = fr - (fr'*D*ones)*ones/(ones'*D*ones)
    4. Laplacian score for the r-th feature is score = (fr_hat'*L*fr_hat)/(fr_hat'*D*fr_hat)

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    kwargs: {dictionary}
        W: {sparse matrix}, shape (n_samples, n_samples)
            input affinity matrix

    Output
    ------
    score: {numpy array}, shape (n_features,)
        laplacian score for each feature

    Reference
    ---------
    He, Xiaofei et al. "Laplacian Score for Feature Selection." NIPS 2005.
    """

    # if 'W' is not specified, use the default W
    if not W:
        W = construct_w(X)
    # build the diagonal D matrix from affinity matrix W
    D = np.array(W.sum(axis=1))
    L = W
    tmp = np.dot(np.transpose(D), X)
    D = diags(np.transpose(D), [0])
    Xt = np.transpose(X)
    t1 = np.transpose(np.dot(Xt, D.todense()))
    t2 = np.transpose(np.dot(Xt, L.todense()))
    # compute the numerator of Lr
    D_prime = np.sum(np.multiply(t1, X), 0) - old_div(np.multiply(tmp, tmp),
                                                      D.sum())
    # compute the denominator of Lr
    L_prime = np.sum(np.multiply(t2, X), 0) - old_div(np.multiply(tmp, tmp),
                                                      D.sum())
    # avoid the denominator of Lr to be 0
    D_prime[D_prime < 1e-12] = 10000

    # compute laplacian score for all features
    score = 1 - np.array(np.multiply(L_prime, old_div(1, D_prime)))[0, :]
    return np.transpose(score)
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']  # data
    X = X.astype(float)
    y = mat['Y']  # label
    y = y[:, 0]

    # construct affinity matrix
    kwargs_W = {
        "metric": "euclidean",
        "neighbor_mode": "knn",
        "weight_mode": "heat_kernel",
        "k": 5,
        't': 1
    }
    W = construct_w.construct_w(X, **kwargs_W)

    # obtain the scores of features
    score = lap_score.lap_score(X, W=W)

    # sort the feature scores in an ascending order according to the feature scores
    idx = lap_score.feature_ranking(score)

    # perform evaluation on clustering task
    num_fea = 100  # number of selected features
    num_cluster = 20  # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(
            X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print('NMI:', old_div(float(nmi_total), 20))
    print('ACC:', old_div(float(acc_total), 20))
示例#5
0
def ndfs(X,
         W=None,
         alpha=1,
         beta=1,
         gamma=10e8,
         F0=None,
         n_clusters=None,
         verbose=False,
         **kwargs):
    """
    This function implement unsupervised feature selection using nonnegative spectral analysis, i.e.,
    min_{F,W} Tr(F^T L F) + alpha*(||XW-F||_F^2 + beta*||W||_{2,1}) + gamma/2 * ||F^T F - I||_F^2
    s.t. F >= 0
    
    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    kwargs: {dictionary}
        W: {sparse matrix}, shape {n_samples, n_samples}
            affinity matrix
        alpha: {float}
            Parameter alpha in objective function
        beta: {float}
            Parameter beta in objective function
        gamma: {float}
            a very large number used to force F^T F = I
        F0: {numpy array}, shape (n_samples, n_clusters)
            initialization of the pseudo label matirx F, if not provided
        n_clusters: {int}
            number of clusters
        verbose: {boolean}
            True if user want to print out the objective function value in each iteration, false if not

    Output
    ------
    W: {numpy array}, shape(n_features, n_clusters)
        feature weight matrix
        
    Reference: 
        Li, Zechao, et al. "Unsupervised Feature Selection Using Nonnegative Spectral Analysis." AAAI. 2012.
    """

    # use the default affinity matrix
    if not W:
        W = construct_w(X)

    if not F0:
        if n_clusters:
            # initialize F
            F0 = kmeans_initialization(X, n_clusters)
        else:
            raise ValueError('Either F0 or n_clusters should be provided.')

    n_samples, n_features = X.shape

    # initialize D as identity matrix
    D = np.identity(n_features)
    I = np.identity(n_samples)

    # build laplacian matrix
    L = np.array(W.sum(1))[:, 0] - W

    max_iter = 1000
    obj = np.zeros(max_iter)
    for iter_step in range(max_iter):
        # update W
        T = np.linalg.inv(
            np.dot(X.transpose(), X) + beta * D + 1e-6 * np.eye(n_features))
        W = np.dot(np.dot(T, X.transpose()), F0)
        # update D
        temp = np.sqrt((W * W).sum(1))
        temp[temp < 1e-16] = 1e-16
        temp = old_div(0.5, temp)
        D = np.diag(temp)
        # update M
        M = L + alpha * (I - np.dot(np.dot(X, T), X.transpose()))
        M = old_div((M + M.transpose()), 2)
        # update F
        denominator = np.dot(
            M, F0) + gamma * np.dot(np.dot(F0, F0.transpose()), F0)
        temp = np.divide(gamma * F0, denominator)
        F0 = F0 * np.array(temp)
        temp = np.diag(
            np.sqrt(np.diag(old_div(1, (np.dot(F0.transpose(), F0) + 1e-16)))))
        F0 = np.dot(F0, temp)

        # calculate objective function
        obj[iter_step] = np.trace(np.dot(np.dot(
            F0.transpose(), M), F0)) + gamma / 4 * np.linalg.norm(
                np.dot(F0.transpose(), F0) - np.identity(n_clusters), 'fro')
        if verbose:
            print('obj at iter ' + str(iter_step + 1) + ': ' +
                  str(obj[iter_step]))

        if iter_step >= 1 and math.fabs(obj[iter_step] -
                                        obj[iter_step - 1]) < 1e-3:
            break
    return W
示例#6
0
def trace_ratio(X, y, n_selected_features, style='fisher', verbose=False, **kwargs):
    """
    This function implements the trace ratio criterion for feature selection

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    y: {numpy array}, shape (n_samples,)
        input class labels
    n_selected_features: {int}
        number of features to select
    kwargs: {dictionary}
        style: {string}
            style == 'fisher', build between-class matrix and within-class affinity matrix in a fisher score way
            style == 'laplacian', build between-class matrix and within-class affinity matrix in a laplacian score way
        verbose: {boolean}
            True if user want to print out the objective function value in each iteration, False if not

    Output
    ------
    feature_idx: {numpy array}, shape (n_features,)
        the ranked (descending order) feature index based on subset-level score
    feature_score: {numpy array}, shape (n_features,)
        the feature-level score
    subset_score: {float}
        the subset-level score

    Reference
    ---------
    Feiping Nie et al. "Trace Ratio Criterion for Feature Selection." AAAI 2008.
    """
    n_samples, n_features = X.shape
    if style is 'fisher':
        kwargs_within = {"neighbor_mode": "supervised", "fisher_score": True, 'y': y}
        # build within class and between class laplacian matrix L_w and L_b
        W_within = construct_w(X, **kwargs_within)
        L_within = np.eye(n_samples) - W_within
        L_tmp = np.eye(n_samples) - old_div(np.ones([n_samples, n_samples]),n_samples)
        L_between = L_within - L_tmp

    if style is 'laplacian':
        kwargs_within = {"metric": "euclidean", "neighbor_mode": "knn", "weight_mode": "heat_kernel", "k": 5, 't': 1}
        # build within class and between class laplacian matrix L_w and L_b
        W_within = construct_w(X, **kwargs_within)
        D_within = np.diag(np.array(W_within.sum(1))[:, 0])
        L_within = D_within - W_within
        W_between = old_div(np.dot(np.dot(D_within, np.ones([n_samples, n_samples])), D_within),np.sum(D_within))
        D_between = np.diag(np.array(W_between.sum(1)))
        L_between = D_between - W_between

    # build X'*L_within*X and X'*L_between*X
    L_within = old_div((np.transpose(L_within) + L_within),2)
    L_between = old_div((np.transpose(L_between) + L_between),2)
    S_within = np.array(np.dot(np.dot(np.transpose(X), L_within), X))
    S_between = np.array(np.dot(np.dot(np.transpose(X), L_between), X))

    # reflect the within-class or local affinity relationship encoded on graph, Sw = X*Lw*X'
    S_within = old_div((np.transpose(S_within) + S_within),2)
    # reflect the between-class or global affinity relationship encoded on graph, Sb = X*Lb*X'
    S_between = old_div((np.transpose(S_between) + S_between),2)

    # take the absolute values of diagonal
    s_within = np.absolute(S_within.diagonal())
    s_between = np.absolute(S_between.diagonal())
    s_between[s_between == 0] = 1e-14  # this number if from authors' code

    # preprocessing
    fs_idx = np.argsort(np.divide(s_between, s_within), 0)[::-1]
    k = old_div(np.sum(s_between[0:n_selected_features]),np.sum(s_within[0:n_selected_features]))
    s_within = s_within[fs_idx[0:n_selected_features]]
    s_between = s_between[fs_idx[0:n_selected_features]]

    # iterate util converge
    count = 0
    while True:
        score = np.sort(s_between-k*s_within)[::-1]
        I = np.argsort(s_between-k*s_within)[::-1]
        idx = I[0:n_selected_features]
        old_k = k
        k = old_div(np.sum(s_between[idx]),np.sum(s_within[idx]))
        if verbose:
            print('obj at iter ' + str(count+1) + ': ' + str(k))
        count += 1
        if abs(k - old_k) < 1e-3:
            break

    # get feature index, feature-level score and subset-level score
    feature_idx = fs_idx[I]
    feature_score = score
    subset_score = k

    return feature_idx, feature_score, subset_score