示例#1
0
def split_label(binary):
    '''Split label using watershed algorithm'''

#    blur_radius = np.round(np.sqrt(min_size)/8).astype(int)
#    print blur_radius

    distance = distance_transform_edt(binary)
#    distance_blured = gaussian_filter(distance, blur_radius)
    distance_blured = gaussian_filter(distance, 8)

#    selem = disk(2)

    local_maxi = peak_local_max(distance_blured, indices=False, labels=binary, min_distance = 10, exclude_border = False)
    markers = measure_label(local_maxi)

    labels_ws = watershed(-distance, markers, mask=binary)

#    selem_morph = np.array([0,1,0,1,1,1,0,1,0], dtype=bool).reshape((3,3))

#    for i in (1,2):
#        maxi = binary_dilation(local_maxi, selem_morph)

#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/distance.jpg', distance)
#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/maxi.jpg', local_maxi*255)

    return labels_ws
示例#2
0
def label_nuclei(binary, min_size):
    '''Label, watershed and remove small objects'''

    distance = medial_axis(binary, return_distance=True)[1]

    distance_blured = gaussian_filter(distance, 5)

    local_maxi = peak_local_max(distance_blured, indices=False, labels=binary, min_distance = 30)

    markers = measure_label(local_maxi)

#    markers[~binary] = -1

#    labels_rw = segmentation.random_walker(binary, markers)

#    labels_rw[labels_rw == -1] = 0

#    labels_rw = segmentation.relabel_sequential(labels_rw)

    labels_ws = watershed(-distance, markers, mask=binary)

    labels_large = remove_small_objects(labels_ws,min_size)

    labels_clean_border = clear_border(labels_large)

    labels_from_one = relabel_sequential(labels_clean_border)

#    plt.imshow(ndimage.morphology.binary_dilation(markers))
#    plt.show()

    return labels_from_one[0]
示例#3
0
def binarize_adaptive(pic_source):

#    binary = threshold_adaptive(pic_source,1000,param = 5.)

    koef = 0.2
    radius = 10

    thres_glb = global_otsu(pic_source)
    thres_loc = local_otsu(pic_source, disk(radius))

    thres_loc[thres_loc < thres_glb*(1-koef)] = thres_glb*(1-koef)
#    thres_loc[thres_loc > thres_glb*(1+koef)] = thres_glb*(1+koef)

    binary = pic_source > thres_loc

#    binary = binary_fill_holes(binary)

    labels = measure_label(binary)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    binary[labels != bg] = True

#    bin_glb = pic_source > thres_glb



#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/binary.jpg', binary)
#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/binary_global.jpg', bin_glb)
    return binary
示例#4
0
def label_nuclei(binary, min_size):
    '''Label, watershed and remove small objects'''

    distance = medial_axis(binary, return_distance=True)[1]

    distance_blured = gaussian_filter(distance, 5)

    local_maxi = peak_local_max(distance_blured,
                                indices=False,
                                labels=binary,
                                min_distance=30)

    markers = measure_label(local_maxi)

    #    markers[~binary] = -1

    #    labels_rw = segmentation.random_walker(binary, markers)

    #    labels_rw[labels_rw == -1] = 0

    #    labels_rw = segmentation.relabel_sequential(labels_rw)

    labels_ws = watershed(-distance, markers, mask=binary)

    labels_large = remove_small_objects(labels_ws, min_size)

    labels_clean_border = clear_border(labels_large)

    labels_from_one = relabel_sequential(labels_clean_border)

    #    plt.imshow(ndimage.morphology.binary_dilation(markers))
    #    plt.show()

    return labels_from_one[0]
示例#5
0
def binarize_canny(pic_source, sensitivity = 5.):

    ht = 5. + ((10 - sensitivity)/5.)*20.

#    print ht

    edges = canny_filter(pic_source, sigma = 3, high_threshold = ht, low_threshold = 2.)

    selem_morph = np.array([0,1,0,1,1,1,0,1,0], dtype=bool).reshape((3,3))

    for i in (1,2):
        edges = binary_dilation(edges, selem_morph)

#    misc.imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/edges.jpg', edges)

#    binary = ndimage.binary_fill_holes(edges)

    labels = measure_label(edges)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    edges[labels != bg] = 255

    selem_med = np.ones((3,3), dtype = bool)

    binary = median_filter(edges, selem_med)

    for i in (1,2,3):
        binary = binary_erosion(edges, selem_morph)

    return edges
示例#6
0
def split_label(binary):
    '''Split label using watershed algorithm'''

    #    blur_radius = np.round(np.sqrt(min_size)/8).astype(int)
    #    print blur_radius

    distance = distance_transform_edt(binary)
    #    distance_blured = gaussian_filter(distance, blur_radius)
    distance_blured = gaussian_filter(distance, 8)

    #    selem = disk(2)

    local_maxi = peak_local_max(distance_blured,
                                indices=False,
                                labels=binary,
                                min_distance=10,
                                exclude_border=False)
    markers = measure_label(local_maxi)

    labels_ws = watershed(-distance, markers, mask=binary)

    #    selem_morph = np.array([0,1,0,1,1,1,0,1,0], dtype=bool).reshape((3,3))

    #    for i in (1,2):
    #        maxi = binary_dilation(local_maxi, selem_morph)

    #    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/distance.jpg', distance)
    #    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/maxi.jpg', local_maxi*255)

    return labels_ws
示例#7
0
    def load_cell_image(self, sensitivity = 5., min_cell_size = 4000):
        '''Load cell image and add cells to self'''

        pic_nuclei = self.get_source_pic_nuclei()
        self.shape = pic_nuclei.shape

        nuclei = find_nuclei(pic_nuclei, sensitivity, min_cell_size)

        self.cell_detect_params = (sensitivity, min_cell_size)

        labels = measure_label(nuclei)

        labelcount = np.bincount(labels.ravel())

        bg = np.argmax(labelcount)

        labels += 1

        labels[labels == bg + 1] = 0

        labels = remove_small_objects(labels, min_cell_size)

        self.nuclei = labels

        self.create_cells_from_nuclei(pic_nuclei)

        self.rescale_nuclei()
示例#8
0
def binarize_adaptive(pic_source):

    #    binary = threshold_adaptive(pic_source,1000,param = 5.)

    koef = 0.2
    radius = 10

    thres_glb = global_otsu(pic_source)
    thres_loc = local_otsu(pic_source, disk(radius))

    thres_loc[thres_loc < thres_glb * (1 - koef)] = thres_glb * (1 - koef)
    #    thres_loc[thres_loc > thres_glb*(1+koef)] = thres_glb*(1+koef)

    binary = pic_source > thres_loc

    #    binary = binary_fill_holes(binary)

    labels = measure_label(binary)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    binary[labels != bg] = True

    #    bin_glb = pic_source > thres_glb

    #    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/binary.jpg', binary)
    #    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/binary_global.jpg', bin_glb)
    return binary
示例#9
0
def get_roundness_filter_indices(mask: torch.Tensor, threshold: float):
    r"""Filter by roundness, where roundness = (4 pi area) / perimeter^2"""

    # Loop over images
    indices = []
    num_pixels = mask.shape[-1] * mask.shape[-2]
    for i, m in enumerate(mask.numpy()):

        # Get connected components
        component, num = measure_label(m, return_num=True, background=0)
        if num == 0:
            return 1000000

        # Get area of biggest connected component
        areas, perimeters = [], []
        for i in range(1, num + 1):
            component_i = (component == i)
            area = np.sum(component_i)
            perimeter = measure_perimeter(component_i)
            areas.append(area)
            perimeters.append(perimeter)
        max_component = np.argmax(areas)
        max_component_area = areas[max_component]
        if num_pixels * 0.05 < max_component_area < num_pixels * 0.90:
            max_component_perimeter = perimeters[max_component]
            roundness = max_component_area / max_component_perimeter**2
            indices.append(roundness > threshold)
        else:
            indices.append(False)
    return torch.tensor(indices)
def clean_up_mask(mask, closing_iterations=4, area_factor=1.5):
    '''
    Cleaning up the segmentation of cells by:
    1) Removing small holes. This somwwhat controlled by "closing_iterations" parameter. More
    iterations will fill larger holes, but will ultimately cause wierd object shapes.
    2) Excluding small objects. Objects with a size of mu - area_factor*std
    (mu: average object area, std: standard deviation of the object area) are excluded. You can choose the area_factor;
    a high factor will result in less objects beeing removed.

    :param mask: mask of cells
    :param closing_iterations: number of iterations during a binary_closing operation
    :param area_factor: Factor defining the threshold to exclude small objects. A large area_factor
    allows smaller objects (see above)
    :return:
    '''
    # binary closing
    mask_clean = copy.deepcopy(mask)
    mask_clean = binary_dilation(mask_clean, iterations=closing_iterations)
    mask_clean = binary_erosion(mask_clean, iterations=closing_iterations)
    # filling holes
    mask_clean = binary_fill_holes(mask_clean)

    # excluding small areas
    labeled = measure_label(mask_clean)
    regions = regionprops(labeled)
    areas = [r.area for r in regions]
    mu = np.mean(areas)
    std = np.std(areas, ddof=1)
    mask_clean = remove_small_objects(mask_clean, mu - area_factor * std)

    return mask_clean
示例#11
0
def get_markers(foci_pic, nucleus, peak_min_val_perc = 60):
    '''Return foci markers'''

#    foci_pic_blured = img_as_ubyte(gaussian_filter(foci_pic, 1))
    foci_pic_blured = np.floor(gaussian_filter(foci_pic, 1)*255).astype(np.uint8)

    foci_values = np.extract(nucleus, foci_pic)

    min_peak_val = np.percentile(foci_values, (peak_min_val_perc))

    local_maxi = peak_local_max(foci_pic_blured, min_distance=5, threshold_abs=min_peak_val, indices=False, labels=nucleus)

    return measure_label(local_maxi)
def detect_dog(img,
               gauss_1=1,
               gauss_2=2,
               threshold="otsu",
               exclude_close_to_edge=False,
               threshold_factor=1):
    '''
    Segmentation (=identifying the area of cells). The image is bandpass-filtered (removing large/unsharp objects
    and small objects). Then the cell area is identified by thresholding. You can use otsus method for
    thresholding ("otsu"), a threshodl based on the histogram of pixels ("mean_std") or use a fixed threshold ("absolute").
    You can also increase or decrease all thresholds with a factor (threshold_factor). If you choose "absolute", the
    threshold is set to 1 and you can only change it with the threshold_factor.
    :param img: Np.ndarray; Image, e.g. the maximums projection.
    :param gauss_1: lower size for the bandpass filter
    :param gauss_2: upper size for the bandpass filter
    :param threshold: Method of thresholding. Possible values are "otsu","mean_std" and "absolute".
    :param exclude_close_to_edge: boolean; Choose if cells close to the image edge are ignored. (Probably not necessary)
    :param threshold_factor: Additional factor for the threshold.
    :return:
    '''
    th = None
    img2 = gaussian(img, gauss_1) - gaussian(img, gauss_2)
    if threshold == "otsu":
        th = threshold_otsu(img2)
    if threshold == "mean_std":
        mu, std = np.mean(np.ravel(img2)), np.std(np.ravel(img2), ddof=1)
        th = mu + 5 * std
    if threshold == "absolute":
        th = 1

    mask = img2 > th * threshold_factor
    labeled = measure_label(mask)
    regions = regionprops(labeled, intensity_image=img2)

    detections = []
    for r in regions:
        y, x = r.weighted_centroid  # optional filtering all detection close to the image edge
        close_to_edge = not ((75 < x < img.shape[1] - 75) and
                             (75 < y < img.shape[0] - 75))
        if not close_to_edge or not exclude_close_to_edge:
            detections.append((x, y))
        else:
            mask[mask == r.label] = 0  # removing label from mask

    detections = np.array(detections)
    return mask, detections
示例#13
0
def binarize_canny(pic_source, sensitivity=5.):

    ht = 5. + ((10 - sensitivity) / 5.) * 25.
    lt = (10 - sensitivity) * 2.

    #    print ht

    sharp = sharpen_image(pic_source)

    edges = canny_filter(sharp, sigma=1, high_threshold=ht, low_threshold=lt)

    selem_morph = np.array([0, 1, 0, 1, 1, 1, 0, 1, 0], dtype=bool).reshape(
        (3, 3))

    for i in (1, 2):
        #    for i in (1,2):
        edges = binary_dilation(edges, selem_morph)

#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/edges.jpg', (edges*255).astype(np.uint8))

#    edges = binary_fill_holes(edges)

    labels = measure_label(edges)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    edges[labels != bg] = True

    #    selem_med = np.ones((3,3), dtype = bool)

    #    binary = median_filter(edges, selem_med)

    for i in (1, 2, 3, 4):
        #    for i in (1,2,3):
        binary = binary_erosion(edges, selem_morph)


#    binary = binary_erosion(binary, selem_morph)

    for i in (1, 2):
        binary = binary_dilation(binary, selem_morph)

    return binary
示例#14
0
def get_markers(foci_pic, nucleus, peak_min_val_perc=60):
    '''Return foci markers'''

    #    foci_pic_blured = img_as_ubyte(gaussian_filter(foci_pic, 1))
    foci_pic_blured = np.floor(gaussian_filter(foci_pic, 1) * 255).astype(
        np.uint8)

    foci_values = np.extract(nucleus, foci_pic)

    min_peak_val = np.percentile(foci_values, (peak_min_val_perc))

    local_maxi = peak_local_max(foci_pic_blured,
                                min_distance=5,
                                threshold_abs=min_peak_val,
                                indices=False,
                                labels=nucleus)

    return measure_label(local_maxi)
示例#15
0
def binarize_canny(pic_source, sensitivity = 5.):

    ht = 5. + ((10 - sensitivity)/5.)*25.
    lt = (10 - sensitivity)*2.

#    print ht

    sharp = sharpen_image(pic_source)

    edges = canny_filter(sharp, sigma = 1, high_threshold = ht, low_threshold = lt)

    selem_morph = np.array([0,1,0,1,1,1,0,1,0], dtype=bool).reshape((3,3))

    for i in (1,2):
#    for i in (1,2):
        edges = binary_dilation(edges, selem_morph)

#    imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/edges.jpg', (edges*255).astype(np.uint8))

#    edges = binary_fill_holes(edges)

    labels = measure_label(edges)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    edges[labels != bg] = True

#    selem_med = np.ones((3,3), dtype = bool)

#    binary = median_filter(edges, selem_med)

    for i in (1,2,3,4):
#    for i in (1,2,3):
        binary = binary_erosion(edges, selem_morph)

#    binary = binary_erosion(binary, selem_morph)

    for i in (1,2):
        binary = binary_dilation(binary, selem_morph)

    return binary
示例#16
0
def apply_connected_components_(m: np.ndarray, threshold: float):
    """Return masks with small connected components removed"""

    # Get connected components
    component, num = measure_label(m, return_num=True, background=0)
    areas = np.zeros([num + 1])
    for comp in range(1, num + 1, 1):
        areas[comp] = np.sum(component == comp)

    # Get area of biggest connected component
    max_component = np.argmax(areas)
    max_component_area = areas[max_component]

    # Create new mask (in-place) with filtered connected components
    m *= 0
    for comp in range(1, num + 1, 1):
        area = areas[comp]
        if float(area) / max_component_area > threshold:
            m[component == comp] = True
    return m
def get_max_indices_and_position(mask, max_indices):
    '''
    Estimating the z-position of cells from a segmentation mask. individual objects are identified by labeling, then
    the z-position is calculated by taking the mean of the maximum-indices in the area of each objects. This also
    returns the x-y-positions of cells by calculating the centroid of each object. Additionally it calculates the
    standard deviation of the maximum indices. A large standard is a signe for problems
    :param mask: Boolean-segmentation mask
    :param max_indices: map of maximum indices
    :return:
    '''
    labeled = measure_label(mask)
    regions = regionprops(labeled)
    max_indices_list = []
    index_variation = []
    pos_list = []
    for r in regions:
        max_indices_list.append(
            np.mean(max_indices[r.coords[:, 0], r.coords[:, 1]]))
        index_variation.append(
            np.std(max_indices[r.coords[:, 0], r.coords[:, 1]]))
        pos_list.append(r.centroid)
    return max_indices_list, index_variation, pos_list
示例#18
0
def binarize_canny(pic_source, sensitivity=5.):

    ht = 5. + ((10 - sensitivity) / 5.) * 20.

    #    print ht

    edges = canny_filter(pic_source,
                         sigma=3,
                         high_threshold=ht,
                         low_threshold=2.)

    selem_morph = np.array([0, 1, 0, 1, 1, 1, 0, 1, 0], dtype=bool).reshape(
        (3, 3))

    for i in (1, 2):
        edges = binary_dilation(edges, selem_morph)


#    misc.imsave('/home/varnivey/Data/Biophys/Burnazyan/Experiments/fluor_calc/test/edges.jpg', edges)

#    binary = ndimage.binary_fill_holes(edges)

    labels = measure_label(edges)

    labelcount = np.bincount(labels.ravel())

    bg = np.argmax(labelcount)

    edges[labels != bg] = 255

    selem_med = np.ones((3, 3), dtype=bool)

    binary = median_filter(edges, selem_med)

    for i in (1, 2, 3):
        binary = binary_erosion(edges, selem_morph)

    return edges
示例#19
0
 def labelizer_image(self, image):
     return measure_label(image, background=0, return_num=True)