示例#1
0
def stk_to_rois(stk, threshold, min_size, max_window=8, downscale_factor=2):
    thresholded_stk = stk > threshold
    thresholded_stk = remove_small_objects(thresholded_stk, min_size)
    distance = ndi.distance_transform_edt(thresholded_stk)
    cropped_stk = stk.copy()
    cropped_stk[np.logical_not(thresholded_stk)] = 0
    combined_stk = cropped_stk + distance/distance.max()
    local_max = peak_local_max(combined_stk, indices=False, 
                               footprint=np.ones((max_window, max_window)), 
                               labels=thresholded_stk)
    markers = ndi.label(local_max)[0]
    labels = watershed(-combined_stk, markers, mask=thresholded_stk)
    new_markers = markers.copy()
    for i in set(labels.flatten()):
        if i == 0: continue
        if np.sum(labels==i) < min_size:
            new_markers[markers==i] = 0
    labels = watershed(-combined_stk, new_markers, mask=thresholded_stk)
    labels_set = set(labels.flatten())
    rois = []
    for label in labels_set:
        if label == 0: continue
        if np.sum((labels==label).astype(int)) < min_size: continue
        nroi = np.zeros((stk.shape[0], stk.shape[1]))
        cx,cy = np.where(labels==label)
        cx,cy = int(cx.mean()), int(cy.mean())
        x,y = np.ogrid[0:nroi.shape[0], 0:nroi.shape[1]]
        r = 4
        mask =  (cx-x)**2 + (cy-y)**2 <= r*r
        nroi[mask] = 1
        #nroi[labels==label] = 1
        rois.append(zoom(nroi, downscale_factor, order=0))
    rois = np.array(rois)
    return rois, thresholded_stk, labels
def do_watershed(image, markers,  tfile, shape, bstruct, algorithm, mg_size, use_ww_wl, wl, ww, q):
    mask = np.memmap(tfile, shape=shape, dtype='uint8', mode='r+')
                
    if use_ww_wl:
        if algorithm == 'Watershed':
            tmp_image = ndimage.morphological_gradient(
                           get_LUT_value(image, ww, wl).astype('uint16'),
                           mg_size)
            tmp_mask = watershed(tmp_image, markers.astype('int16'), bstruct)
        else:
            tmp_image = get_LUT_value(image, ww, wl).astype('uint16')
            #tmp_image = ndimage.gaussian_filter(tmp_image, self.config.mg_size)
            #tmp_image = ndimage.morphological_gradient(
                           #get_LUT_value(image, ww, wl).astype('uint16'),
                           #self.config.mg_size)
            tmp_mask = watershed_ift(tmp_image, markers.astype('int16'), bstruct)
    else:
        if algorithm == 'Watershed':
            tmp_image = ndimage.morphological_gradient((image - image.min()).astype('uint16'), mg_size)
            tmp_mask = watershed(tmp_image, markers.astype('int16'), bstruct)
        else:
            tmp_image = (image - image.min()).astype('uint16')
            #tmp_image = ndimage.gaussian_filter(tmp_image, self.config.mg_size)
            #tmp_image = ndimage.morphological_gradient((image - image.min()).astype('uint16'), self.config.mg_size)
            tmp_mask = watershed_ift(tmp_image, markers.astype('int8'), bstruct)
    mask[:] = tmp_mask
    mask.flush()
    q.put(1)
示例#3
0
    def analyse(self, **kwargs):
        image_object = kwargs['image']

        if image_object is None:
            raise RuntimeError()

        # Read the image
        image = cv2.imread(self.image_utils.getOutputFilename(image_object.id))

        if image is None:
            print('File not found')
            return

        # Work on green channel
        gray = image[:, :, 1]

        # Apply otsu thresholding
        thresh = filters.threshold_otsu(gray)
        gray[gray < thresh] = 0

        # Apply histogram equalization
        gray = exposure.equalize_adapthist(gray) * 255

        # Create elevation map
        elevation_map = filters.sobel(gray)

        gray = gray.astype(int)

        # Create cell markers
        markers = numpy.zeros_like(gray)
        markers[gray < 100] = 2  # seen as white in plot
        markers[gray > 150] = 1  # seen as black in plot

        # Segment with watershed using elevation map
        segmentation = morphology.watershed(elevation_map, markers)
        segmentation = ndi.binary_fill_holes(segmentation - 1)
        # labeled_image, n = ndi.label(segmentation)

        # Watershed with distance transform
        kernel = numpy.ones((5, 5), numpy.uint8)

        distance = ndi.distance_transform_edt(segmentation)
        distance2 = cv2.erode(distance, kernel)
        distance2 = cv2.dilate(distance2, kernel)
        local_max = peak_local_max(distance2, num_peaks=1, indices=False, labels=segmentation)
        markers2 = ndi.label(local_max)[0]
        labels = morphology.watershed(-distance2, markers2, mask=segmentation)

        # Extract regions (caching signifies more memory use)
        regions = regionprops(labels, cache=True)

        # Filter out big wrong regions
        regions = [region for region in regions if region.area < 2000]

        # Set result
        result = str(len(regions))

        return result
 def run(self, workspace):
     labeled_nuclei = workspace.object_set.get_objects(self.primary_objects.value).get_segmented()
     cell_image = workspace.image_set.get_image(self.image_name.value).pixel_data[:,:]
     image_collection = []
     cell_treshold = otsu(cell_image, min_threshold=0, max_threshold=1)
     
     cell_binary = (cell_image >= cell_treshold)
     cell_distance = scipym.distance_transform_edt(cell_binary).astype(np.uint16)
     cell_labeled = skm.watershed(-cell_distance, labeled_nuclei, mask=cell_binary)
     
      
     #
     #fil hall and filter on syze the object in cell_labeled
     #
     cell_labeled = self.filter_on_border(cell_labeled)
     cell_labeled = fill_labeled_holes(cell_labeled)
 
     objects = cellprofiler.objects.Objects()
     objects.segmented = cell_labeled
     objects.parent_image = cell_image
     
     workspace.object_set.add_objects(objects, self.object_name.value)        
     image_collection.append((cell_image, "Original"))
     image_collection.append((cell_labeled, "Labelized image"))
     workspace.display_data.image_collection = image_collection
示例#5
0
文件: honeycomp.py 项目: rhoef/afw
    def __call__(self, image, window_size=10, threshold=0, fill_holes=True,
                 outline_smoothing=2, remove_borderobjects=True, size_min=1,
                 *args, **kw):

        thresh = threshold_adaptive(image, block_size=window_size,
                                    offset=-1*threshold)

        if outline_smoothing >= 1:
            thresh = outlineSmoothing(thresh, outline_smoothing)

        thresh = remove_small_objects(thresh, size_min)

        seeds = ndi.label(clear_border(~thresh))[0]
        thresh = ndi.binary_fill_holes(thresh)
        smask = seeds.astype(bool)

        # object don't touch border after outline smoothing
        if remove_borderobjects:
            thresh = clear_border(thresh)

        img = np.zeros(thresh.shape)
        img[~smask] = 1
        edt = ndi.morphology.distance_transform_edt(img)
        edt -= ndi.morphology.distance_transform_edt(seeds)

        labels = watershed(edt, seeds)
        labels[smask] = 0
        labels[~thresh] = 0

        return labels
示例#6
0
def watershed_with_seeds(image, seed_image, mask_image=None, name='watershed'):
    """Perform watershed segmentation from given seeds. Inputs should be of the
    form:

    image : grayscale image, with higher values representing more signal

    seed_image : grayscale image where each pixel value represents a unique
    region"""

    if mask_image is None:
        mask = None
    else:
        mask = mask_image.image_array

    # We multiply the image by -1 because the algorithm implementation expects
    # higher values to be easier for the 'water' to pass
    segmented = watershed(-image.image_array, 
                          seed_image.image_array, 
                          mask=mask)


    ia = ImageArray(segmented, name)
    ia.history = image.history + [name]

    return ia
示例#7
0
    def segment(self, src):
        image = src.ndarray[:]
        if self.use_adaptive_threshold:
            block_size = 25
            markers = threshold_adaptive(image, block_size) * 255
            markers = invert(markers)

        else:
            markers = zeros_like(image)
            markers[image < self.threshold_low] = 1
            markers[image > self.threshold_high] = 255

        elmap = sobel(image, mask=image)
        wsrc = watershed(elmap, markers, mask=image)

#        elmap = ndimage.distance_transform_edt(image)
#        local_maxi = is_local_maximum(elmap, image,
#                                      ones((3, 3))
#                                      )
#        markers = ndimage.label(local_maxi)[0]
#        wsrc = watershed(-elmap, markers, mask=image)
#        fwsrc = ndimage.binary_fill_holes(out)
#        return wsrc
        if self.use_inverted_image:
            out = invert(wsrc)
        else:
            out = wsrc

#        time.sleep(1)
#        do_later(lambda:self.show_image(image, -elmap, out))
        return out
示例#8
0
def label_nuclei(binary, min_size):
    '''Label, watershed and remove small objects'''

    distance = medial_axis(binary, return_distance=True)[1]

    distance_blured = gaussian_filter(distance, 5)

    local_maxi = peak_local_max(distance_blured, indices=False, labels=binary, min_distance = 30)

    markers = measure_label(local_maxi)

#    markers[~binary] = -1

#    labels_rw = segmentation.random_walker(binary, markers)

#    labels_rw[labels_rw == -1] = 0

#    labels_rw = segmentation.relabel_sequential(labels_rw)

    labels_ws = watershed(-distance, markers, mask=binary)

    labels_large = remove_small_objects(labels_ws,min_size)

    labels_clean_border = clear_border(labels_large)

    labels_from_one = relabel_sequential(labels_clean_border)

#    plt.imshow(ndimage.morphology.binary_dilation(markers))
#    plt.show()

    return labels_from_one[0]
示例#9
0
    def segment(self, src):
        '''
            pychron: preprocessing cv.Mat
        '''
#        image = pychron.ndarray[:]
#         image = asarray(pychron)
        image = src[:]
        if self.use_adaptive_threshold:
#            block_size = 25
            markers = threshold_adaptive(image, self.block_size)

            n = markers[:].astype('uint8')
            n[markers == True] = 255
            n[markers == False] = 1
            markers = n

        else:
            markers = zeros_like(image)
            markers[image < self.threshold_low] = 1
            markers[image > self.threshold_high] = 255

        elmap = sobel(image, mask=image)
        wsrc = watershed(elmap, markers, mask=image)

#         wsrc = wsrc.astype('uint8')
        return invert(wsrc)
def segment_out_cells(base):
    # TODO: try using OTSU for GFP thresholding

    sel_elem = disk(2)
    gfp_collector = np.sum(base, axis=0)
    gfp_clustering_markers = np.zeros(gfp_collector.shape, dtype=np.uint8)
    # random walker segment
    gfp_clustering_markers[gfp_collector > np.mean(gfp_collector) * 2] = 2
    gfp_clustering_markers[gfp_collector < np.mean(gfp_collector) * 0.20] = 1
    labels = random_walker(gfp_collector, gfp_clustering_markers, beta=10, mode='bf')
    # round up the labels and set the background to 0 from 1
    labels = closing(labels, sel_elem)
    labels -= 1
    # prepare distances for the watershed
    distance = ndi.distance_transform_edt(labels)
    local_maxi = peak_local_max(distance,
                                indices=False,  # we want the image mask, not peak position
                                min_distance=10,  # about half of a bud with our size
                                threshold_abs=10,  # allows to clear the noise
                                labels=labels)
    # we fuse the labels that are close together that escaped the min distance in local_maxi
    local_maxi = ndi.convolve(local_maxi, np.ones((5, 5)), mode='constant', cval=0.0)
    # finish the watershed
    expanded_maxi_markers = ndi.label(local_maxi, structure=np.ones((3, 3)))[0]
    segmented_cells_labels = watershed(-distance, expanded_maxi_markers, mask=labels)

    # log debugging data
    running_debug_frame.gfp_collector = gfp_collector
    running_debug_frame.gfp_clustering_markers = gfp_clustering_markers
    running_debug_frame.labels = labels
    running_debug_frame.segmented_cells_labels = segmented_cells_labels

    return gfp_collector, segmented_cells_labels
    def split_object(self, labeled_image):
        """ split object when it's necessary
        """
        
        labeled_image = labeled_image.astype(np.uint16)

        labeled_mask = np.zeros_like(labeled_image, dtype=np.uint16)
        labeled_mask[labeled_image != 0] = 1

        #ift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even num===============================
       
        labeled_image = skr.median(labeled_image, skm.disk(4))
        labeled_mask = np.zeros_like(labeled_image, dtype=np.uint16)
        labeled_mask[labeled_image != 0] = 1
        distance = scipym.distance_transform_edt(labeled_image).astype(np.uint16)
        #=======================================================================
        # binary = np.zeros(np.shape(labeled_image))
        # binary[labeled_image > 0] = 1
        #=======================================================================
        distance = skr.mean(distance, skm.disk(15))
         
        l_max = skr.maximum(distance, skm.disk(5))
        #l_max = skf.peak_local_max(distance, indices=False,labels=labeled_image, footprint=np.ones((3,3)))
        l_max = l_max - distance <= 0
        
        l_max = skr.maximum(l_max.astype(np.uint8), skm.disk(6))
        
       
        
        marker = ndimage.label(l_max)[0]
        split_image = skm.watershed(-distance, marker)
        
        split_image[split_image[0,0] == split_image] = 0
        
        return split_image
示例#12
0
def _segment_watershed(image):
	elevation_map = sobel(image)
	markers = np.zeros(image.shape) # initialize markers as zero array 

	
	# determine thresholds for markers
	sorted_pixels = np.sort(image, axis=None)
	max_int = np.mean(sorted_pixels[-10:])
	min_int = np.mean(sorted_pixels[:10])
	#max_int = np.max(orig_image)
	#min_int = np.min(orig_image)
	
	alpha_min = 0.01
	alpha_max = 0.4
	thresh_background = (1-alpha_min)*min_int	+	alpha_min*max_int
	thresh_spots = 		(1-alpha_max)*min_int	+	alpha_max*max_int
	
	markers[image < thresh_background] = 1 # mark background
	markers[image > thresh_spots] = 2 # mark background
	
	segmentation = watershed(elevation_map, markers)
	segmentation = segmentation-1
	segmentation = ndi.binary_fill_holes(segmentation)	# fill holes
	
	return segmentation
示例#13
0
def testSkimage():
    img = Image.open('../img/1.png')
    img = np.array(img)
    imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # (thresh, imgbw) = cv2.threshold(imggray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

    # canny detector
    # from skimage.feature import canny
    # edges = canny(imggray/ 255.)
    from scipy import ndimage as ndi
    # fill_imgbw = ndi.binary_fill_holes(edges)
    # label_objects, nb_labels = ndi.label(fill_imgbw)
    # sizes = np.bincount(label_objects.ravel())
    # mask_sizes = sizes > 20
    # mask_sizes[0] = 0
    # cleaned_imgbw = mask_sizes[label_objects]

    markers = np.zeros_like(imggray)
    markers[imggray < 120] = 1
    markers[imggray > 150] = 2

    from skimage.filters import sobel
    elevation_map = sobel(imggray)
    from skimage.morphology import watershed
    segmentation = watershed(elevation_map, markers)

    # from skimage.color import label2rgb
    # segmentation = ndi.binary_fill_holes(segmentation - 10)
    # labeled_coins, _ = ndi.label(segmentation)
    # image_label_overlay = label2rgb(labeled_coins, image=imggray)
    plt.imshow(segmentation, cmap='gray')
    plt.show()
    return
def detectOpticDisc(image):
    kernel = octagon(10, 10)
    thresh = threshold_otsu(image[:,:,1])
    binary = image > thresh
    print binary.dtype
    luminance = convertToHLS(image)[:,:,2]
    t = threshold_otsu(luminance)
    t = erosion(luminance, kernel)
    
    
    labels = segmentation.slic(image[:,:,1], n_segments = 3)
    out = color.label2rgb(labels, image[:,:,1], kind='avg')
    skio.imshow(out)
    
    x, y = computeCentroid(t)
    print x, y
    rows, cols, _ = image.shape
    p1 = closing(image[:,:,1],kernel)
    p2 = opening(p1, kernel)
    p3 = reconstruction(p2, p1, 'dilation')
    p3 = p3.astype(np.uint8)
    #g = dilation(p3, kernel)-erosion(p3, kernel)
    #g = rank.gradient(p3, disk(5))
    g = cv2.morphologyEx(p3, cv2.MORPH_GRADIENT, kernel)
    #markers = rank.gradient(p3, disk(5)) < 10
    markers = drawCircle(rows, cols, x, y, 85)
    #markers = ndimage.label(markers)[0]
    #skio.imshow(markers)
    g = g.astype(np.uint8)
    #g = cv2.cvtColor(g, cv2.COLOR_GRAY2RGB)
    w = watershed(g, markers)
    print np.max(w), np.min(w)
    w = w.astype(np.uint8)
    #skio.imshow(w)
    return w
示例#15
0
文件: region.py 项目: NMGRL/pychron
    def segment(self, image):
        """
        """
        # image = src[:]
        if self.use_adaptive_threshold:
            bs = self.blocksize
            if not bs % 2:
                bs += 1

            markers = threshold_adaptive(image, bs)

            # n = markers[:].astype('uint8')
            n = markers.astype('uint8')
            # n[markers] = 255
            # n[invert(markers)] = 1
            # markers = n
            return n
        else:
            markers = zeros_like(image)
            # print('image',image.max(), image.min())
            # print('le', image<self.threshold_low)
            # print('ge', image>self.threshold_high)
            markers[image <= self.threshold_low] = 1
            markers[image > self.threshold_high] = 255

        #elmap = sobel(image, mask=image)
        elmap = canny(image, sigma=1)
        wsrc = watershed(elmap, markers, mask=image)

        return invert(wsrc)
示例#16
0
def black_background(image, kernel):

    shifted = cv2.pyrMeanShiftFiltering(image, 10, 39)
    gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255,
                           cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    D = ndimage.distance_transform_edt(thresh)
    localMax = peak_local_max(D, indices=False, min_distance=10,
                              labels=thresh)

    # perform a connected component analysis on the local peaks,
    # using 8-connectivity, then appy the Watershed algorithm
    markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
    labels = watershed(-D, markers, mask=thresh)
    # create a mask
    mask2 = np.zeros(gray.shape, dtype="uint8")
    #  loop over the unique labels returned by the Watershed  algorithm for
    for label in np.unique(labels):
        # if the label is zero, we are examining the 'background' so simply ignore it
        if label == 0:
            continue
        # otherwise, allocate memory for the label region and draw
        # it on the mask
        mask2[labels == label] = 255
    return mask2
示例#17
0
    def segment(self, data, peaks):
        """Perform a watershed segmentation based on local maxima."""
        markers = np.zeros_like(data)
        markers[tuple(peaks.T)] = np.arange(len(peaks)) + 1
        seg = morphology.watershed(-data, markers, mask=data > 0)

        return seg, markers
示例#18
0
def Image_ws_tranche(image):
    
    laser = Detect_laser(image)
    laser_tranche = tranche_image(laser,60)
    
    image_g = skimage.color.rgb2gray(image)
    image_g = image_g * laser_tranche
    
    image_med = rank2.median((image_g*255).astype('uint8'),disk(8))
    
    image_clahe = exposure.equalize_adapthist(image_med, clip_limit=0.03)
    image_clahe_stretch = exposure.rescale_intensity(image_clahe, out_range=(0, 256))

    image_grad = rank2.gradient(image_clahe_stretch,disk(3))
    
    image_grad_mark = image_grad<20
    image_grad_forws = rank2.gradient(image_clahe_stretch,disk(1))
    
    image_grad_mark_closed = closing(image_grad_mark,disk(1))
    
    Labelised = (skimage.measure.label(image_grad_mark_closed,8,0))+1
    Watersheded  = watershed(image_grad_forws,Labelised)
    
    cooc = coocurence_liste(Watersheded,laser,3)
    
    x,y = compte_occurences(cooc)
    
    return x,y
def segmentation(file_name):
    data_x, data_y, data_z = get_data(file_name)
    shape_x = len(np.unique(data_x))
    shape_y = len(np.unique(data_y))
    X = data_x.reshape(shape_x, shape_y)
    Y = data_y.reshape(shape_x, shape_y)
    Z = data_z.reshape(shape_x, shape_y)

    markers = np.zeros_like(Z)
    markers[Z < 0.15] = 1
    markers[Z > 0.3] = 2
    elevation_map = roberts(Z)
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharex=True, sharey=True)
    # ax.imshow(Z)
    # ax.imshow(elevation_map, cmap=plt.cm.jet, interpolation='nearest')
    segmentation = watershed(elevation_map, markers)
    ax2.imshow(segmentation, interpolation='nearest')
    # ax.axis('off')
    # ax.set_title('segmentation')
    segmentation = ndi.binary_fill_holes(segmentation - 1)
    labeled_coins, _ = ndi.label(segmentation)
    ax1.imshow(Z, cmap=plt.cm.gray, interpolation='nearest')
    ax1.contour(segmentation, [0.5], linewidths=1.2, colors='y')
    ax1.axis('off')
    ax1.set_adjustable('box-forced')

    plt.show()
示例#20
0
def watershed(image):
    hsv_image = color.rgb2hsv(image)

    low_res_image = rescale(hsv_image[:, :, 0], SCALE)
    local_mean = mean(low_res_image, disk(50))
    local_minimum_flat = np.argmin(local_mean)
    local_minimum = np.multiply(np.unravel_index(local_minimum_flat, low_res_image.shape), round(1 / SCALE))

    certain_bone_pixels = np.full_like(hsv_image[:, :, 0], False, bool)
    certain_bone_pixels[
    local_minimum[0] - INITIAL_WINDOW_SIZE/2:local_minimum[0]+INITIAL_WINDOW_SIZE/2,
    local_minimum[1] - INITIAL_WINDOW_SIZE/2:local_minimum[1]+INITIAL_WINDOW_SIZE/2
    ] = True

    certain_non_bone_pixels = np.full_like(hsv_image[:, :, 0], False, bool)
    certain_non_bone_pixels[0:BORDER_SIZE, :] = True
    certain_non_bone_pixels[-BORDER_SIZE:-1, :] = True
    certain_non_bone_pixels[:, 0:BORDER_SIZE] = True
    certain_non_bone_pixels[:, -BORDER_SIZE:-1] = True

    smoothed_hsv = median(hsv_image[:, :, 0], disk(50))
    threshold = MU * np.median(smoothed_hsv[certain_bone_pixels])

    possible_bones = np.zeros_like(hsv_image[:, :, 0])
    possible_bones[smoothed_hsv < threshold] = 1

    markers = np.zeros_like(possible_bones)
    markers[certain_bone_pixels] = 1
    markers[certain_non_bone_pixels] = 2

    labels = morphology.watershed(-possible_bones, markers)

    return labels
    def find_neighbors(self, imbin, max_extension):
        background = np.zeros(imbin.shape)
        background[imbin==0] = 255
        distance = ndi.distance_transform_edt(background)
        cell_labels = label(imbin, neighbors=4, background=0)

        # this is a hack, as background pixels obtain label -1
        # and we do not want to have negative values. 
        # from version 0.12 this can be removed, probably.
        cell_labels = cell_labels - cell_labels.min()
        
        # the mask is an extension of the initial shape by max_extension. 
        # it can be derived from the distance map (straight forward)
        mask = np.zeros(imbin.shape)
        mask[distance < max_extension] = 255

        # The watershed of the distance transform of the background. 
        # this corresponds an approximation of the "cells"
        labels = watershed(distance, cell_labels, mask=mask)

        if self.settings.debug_screen_output:
            out_filename = os.path.join(self.settings.img_debug_folder, '%s16_distance.png' % self.prefix)
            temp = distance / distance.max()
            skimage.io.imsave(out_filename, temp)

            out_filename = os.path.join(self.settings.img_debug_folder, '%s16_labels_from_ws.png' % self.prefix)
            skimage.io.imsave(out_filename, labels)        
        
        return cell_labels, labels
示例#22
0
文件: count.py 项目: diptodip/graf
def segment(image, thresh):
    #preprocess image
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    
    #perform euclidean distance transform
    distances = ndimage.distance_transform_edt(thresh)
    localMax = peak_local_max(distances, indices = False, min_distance = 3, labels = thresh)

    #perform connected component analysis on local peaks
    markers = ndimage.label(localMax, structure = np.ones((3, 3)))[0]
    labels = watershed(-distances, markers, mask = thresh)

    #loop over labels returned from watershed to mark them
    for label in np.unique(labels):
        if label == 0:
            continue

        mask = np.zeros(gray.shape, dtype="uint8")
        mask[labels == label] = 255

        #find contours in mask and choose biggest contour by area
        contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
        contour = max(contours, key = cv2.contourArea)

        #draw circle around max size contour
        ((x, y), r) = cv2.minEnclosingCircle(contour)
        cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)
    
    #show final image
    cv2.imshow("Output", image)
    return len(np.unique(labels) - 1)
示例#23
0
文件: auto2.py 项目: mmorehea/annie
def waterShed(blob, shape):
	img = np.zeros(shape, np.uint16)
	img[zip(*blob)] = 99999

	D = ndimage.distance_transform_edt(img)
	mindist = 7
	labels = [1,2,3,4]
	while len(np.unique(labels)) > 3:
		mindist += 1
		localMax = peak_local_max(D, indices=False, min_distance=mindist, labels=img)

		markers = ndimage.label(localMax, structure=np.ones((3,3)))[0]
		labels = watershed(-D, markers, mask=img)

	subBlobs = []
	for label in np.unique(labels):
		if label == 0:
			continue
		ww = np.where(labels==label)
		bb = zip(ww[0], ww[1])
		subBlobs.append(bb)
	# code.interact(local=locals())
	try:
		return subBlobs, zip(np.where(localMax==True)[0],np.where(localMax==True)[1])[0]
	except IndexError:
		return subBlobs, 0
示例#24
0
    def ImageSegmentation(self):

        kernel = np.array(self.coords_cell, np.int32)
        circle = np.zeros(self.image.shape[:2], np.uint8)

        # link with polylines the coordinates of "left click", thickness could be adjusted,
        # Could also fill inside the polyline
        cv2.polylines(circle,[kernel],False,(255,0,0), thickness=5)
        kernel2 = np.array(self.coords_cell, np.int32)
        circle2 = np.zeros(self.image.shape[:2], np.uint8)
        cv2.polylines(circle2,[kernel2],False,(255,0,0), thickness=4)

        # Segmentation of the protein accumulation using watershed
        self.segmentation = morphology.watershed(self.clean_image, self.markers, mask = circle)
        self.segmentation[self.segmentation < 1.5] = 0
        self.segmentation = self.segmentation.astype('uint8')

        # Find contour of the segmented area
        contours,hierarchy = cv2.findContours(self.segmentation, 1, 2)

        # Find countour of the masked area
        contours_circle,hierarchy = cv2.findContours(circle2, 1, 2)
        self.area = [cv2.contourArea(cnt) for cnt in contours if (cv2.contourArea(cnt))!=0.0]

        self.area = sum(self.area)
        self.area_mask = [cv2.contourArea(cnt_cell) for cnt_cell in contours_circle]
        self.area_mask = sum(self.area_mask)

        if self.area > 0:
            self.surface_segmented.append(self.area)
        if self.area_mask > 0:
            self.surface_masked.append(self.area_mask)
def segmentationize(imageSe):
    """
    Divides coherent forms of an image in smaller groups of type integer.
    """
    
    # create an matrix of distances to the next sourrounding area
    distance = ndimage.distance_transform_edt(imageSe, sampling=3)
    erosed = ndimage.binary_erosion(imageSe, iterations=8).astype(imageSe.dtype)
    distanceE = ndimage.distance_transform_edt(erosed, sampling=3)
    distance += (2 * distanceE)
    labels, num = label(imageSe, background=0, return_num='True')
    sizes_image = ndimage.sum(imageSe, labels, range(num))
    sizes_image = np.sort(sizes_image, axis=None)
    pos = int(0.4 * num)
    areal = int(sizes_image[pos] ** 0.5)
    if areal <= 10:
        areal = 10
    elif (areal % 2) != 0:
        areal += 1
    footer = circarea(areal) # draw circle area
    
    # find the positions of the maxima from the distances
    local_maxi = peak_local_max(distance, indices=False, footprint=footer, labels=imageSe)
    markers = label(local_maxi)
    
    # watershed algorithm starts at the maxima and returns labels of particles
    simplefilter("ignore", FutureWarning)   # avoid warning in watershed method
    labels_ws = watershed(-distance, markers, mask=imageSe)
    simplefilter("default", FutureWarning)
    
    return labels, labels_ws, local_maxi
示例#26
0
    def expand_watershed(self, pubsub_evt):
        markers = self.matrix
        image = self.viewer.slice_.matrix
        self.viewer.slice_.do_threshold_to_all_slices()
        mask = self.viewer.slice_.current_mask.matrix[1:, 1:, 1:]
        ww = self.viewer.slice_.window_width
        wl = self.viewer.slice_.window_level
        if BRUSH_BACKGROUND in markers and BRUSH_FOREGROUND in markers:
            tmp_image = ndimage.morphological_gradient(get_LUT_value(image, ww, wl).astype('uint16'), self.mg_size)
            tmp_mask = watershed(tmp_image, markers)

            if self.viewer.overwrite_mask:
                mask[:] = 0
                mask[tmp_mask == 1] = 253
            else:
                mask[(tmp_mask==2) & ((mask == 0) | (mask == 2) | (mask == 253))] = 2
                mask[(tmp_mask==1) & ((mask == 0) | (mask == 2) | (mask == 253))] = 253

            #mask[:] = tmp_mask
            self.viewer.slice_.current_mask.matrix[0] = 1
            self.viewer.slice_.current_mask.matrix[:, 0, :] = 1
            self.viewer.slice_.current_mask.matrix[:, :, 0] = 1

            self.viewer.slice_.discard_all_buffers()
            self.viewer.slice_.current_mask.clear_history()
            Publisher.sendMessage('Reload actual slice')
示例#27
0
def seeded_watershed(boundary, seed_threshold = 0, seed_size = 5, mask=None):
    """Extract seeds from boundary prediction and runs seeded watershed.

    Args:
        boundary (3D numpy array) = boundary predictions
        seed_threshold (int) = Add seeds where boundary prob is <= threshold
        seed_size (int) = seeds must be >= seed size
        mask (3D numpy array) = true to watershed, false to ignore
    Returns:
        3d watershed
    """
    
    from skimage import morphology as skmorph
    from numpy import bincount 

    # get seeds
    from scipy.ndimage import label as label2
    seeds = label2(boundary <= seed_threshold, output=numpy.uint32)[0]

    # remove small seeds
    if seed_size > 0:
        component_sizes = bincount(seeds.ravel())
        small_components = component_sizes < seed_size 
        small_locations = small_components[seeds]
        seeds[small_locations] = 0

    # mask out background (don't have to 0 out seeds since)
    supervoxels = skmorph.watershed(boundary, seeds,
            None, None, mask)

    return supervoxels
示例#28
0
def LargestWatershedRegion(shapes,dims,skipBias): 
    L=len(shapes)-skipBias     
    shapes=shapes.reshape((-1,) + dims[1:]) 
    D=len(dims)
    num_peaks=4
#    structure=np.ones(tuple(3*np.ones((np.ndim(shapes)-1,1))))
    for ll in range(L): 
        temp=shapes[ll]
        local_maxi = peak_local_max(gaussian_filter(temp,[1]*(D-1)), exclude_border=False, indices=False, num_peaks=num_peaks)
        markers,junk = label(local_maxi)
        nonzero_mask=temp>0
        if np.sum(nonzero_mask)>(3**3)*num_peaks:
            labels = watershed(-temp, markers, mask=nonzero_mask) #watershed regions
            ind = 1
            temp2 = np.copy(temp)
            temp2[labels!=1]=0
            total_intensity = sum(temp2.reshape(-1,))
            for kk in range(2,labels.max()+1):
                temp2 = np.copy(temp)
                temp2[labels!=kk]=0
                total_intensity2 = sum(temp2.reshape(-1,))
                if total_intensity2>total_intensity:
                    ind = kk
                    total_intensity=total_intensity2
            temp[labels!=ind]=0
            shapes[ll]=temp
    shapes=shapes.reshape((len(shapes),-1))
    return shapes
def watershed(base_image, seed_image=None, threshold_distance=80):
    """ execute watershed with chosen seeds
    """
    from scipy import ndimage as ndi
    
    from skimage.morphology import watershed
    from skimage.feature import peak_local_max
    from skimage.morphology import label
    import matplotlib.pyplot as plt
    
    
    distance = ndi.distance_transform_edt(base_image)
    #    imgplot = plt.imshow(distance)
    fig = plt.figure()  # a new figure window
    ax = fig.add_subplot(1, 1, 1)  # specify (nrows, ncols, axnum)
    #    ax.imshow(distance>threshold_distance, cmap='Greys')
    
    thresh = distance > threshold_distance
    ax.imshow(thresh, cmap='Greys') 
    
    
    
    #local_maxi = peak_local_max(distance, labels=jac, footprint=np.ones((100, 100)), indices=False)
    if seed_image is None: 
        markers = label(thresh)
    else:
        markers = label(seed_image)

    #    imgplot = plt.imshow(markers)
     
      
    watersh = watershed(-distance, markers, mask=base_image) 
    #    plt.imshow(watersh, cmap=plt.cm.viridis, interpolation='nearest')
    
    return watersh
def isolate_single_seed(stack_path, output_path):
    """Load stack then isolate seed."""

    sigma = 10
    iterations = 1

    raw_stack = Image3D.from_path(stack_path)

    print raw_stack.shape

    smoothed = gaussian_filter(raw_stack, sigma).view(Image3D)

    edges = sobel_magnitude_nd(smoothed).view(Image3D)

    #edges.save('edges')

    labels = np.zeros(raw_stack.shape)
    cx, cy, cz = map(lambda x: x/2, raw_stack.shape)
    labels[cx, cy, cz] = 1

    threshold = threshold_otsu(smoothed)
    thresholded = smoothed > threshold

    #thresholded.view(Image3D).save('thresh')

    segmentation = watershed(edges, markers=labels, mask=thresholded)

    #segmentation.view(Image3D).save('seg')

    dilated = binary_dilation(segmentation, iterations=iterations)

    isolate = np.multiply(raw_stack, dilated)

    isolate.view(Image3D).save(output_path)
        #     plt.figure(5)
        #     plt.imshow(segmented_ct_scan_Blur[i], cmap=plt.cm.gray)
        #     plt.figure(6)
        #     plt.imshow(Nodule_Candidate[i], cmap=plt.cm.gray)
        #     # plt.figure(7)
        #     # plt.imshow(Nodule_Candidate_mor[i], cmap=plt.cm.gray)
        #     plt.show()

        start_time = time.time()
        Total_Num_Label = 0
        nodule_total_array = []

        distance1 = ndi.distance_transform_edt(Nodule_Candidate)
        local_maxi1 = Dist_Thresholding_3D(distance1)
        markers1 = label(local_maxi1)
        labels1 = watershed(-distance1, markers1, mask=Nodule_Candidate)
        nodule_total_array, Total_Num_Label1 = Nodule_Candidate_Extract(
            pix_resampled, segmented_ct_scan, labels1, patients[i], i,
            nodule_total_array)

        Total_Num_Label = Total_Num_Label + Total_Num_Label1

        distance2 = ndi.distance_transform_edt(Nodule_Candidate_Op1)
        local_maxi2 = Dist_Thresholding_3D(distance2)
        markers = label(local_maxi2)
        labels2 = watershed(-distance2, markers, mask=Nodule_Candidate_Op1)
        nodule_total_array, Total_Num_Label2 = Nodule_Candidate_Extract(
            pix_resampled, segmented_ct_scan, labels2, patients[i], i,
            nodule_total_array)

        Total_Num_Label = Total_Num_Label + Total_Num_Label2
示例#32
0
 def segment(self):
     # start timing
     starttime = time.time()
     # DATA IMPORT AND PREPROCESSING
     f_directory = os.getcwd()
     print('reading ' + self.filename + ' ...')
     raw_img = io.imread(self.filename)
     default_shape = raw_img.shape
     print('raw image imported.')
     # next step's gaussian filter
     print('performing gaussian filtering...')
     gaussian_img = np.zeros(shape=default_shape, dtype='float32')
     for i in range(default_shape[0]):
         temp_img = np.copy(raw_img[i])
         gaussian_img[i] = gaussian_filter(input=raw_img[i], sigma=(2, 2))
     print('cytosolic image smoothed.')
     print('preprocessing complete.')
     # next step's gaussian filter assumes 60x objective
     # BINARY THRESHOLDING AND IMAGE CLEANUP
     print('thresholding...')
     threshold_img = np.copy(gaussian_img)
     threshold_img[threshold_img < self.threshold] = 0
     threshold_img[threshold_img > 0] = 1
     print('filling holes...')
     filled_img = np.zeros(shape=default_shape, dtype='float32')
     #Goes through each time course separately and creates a filled image.
     for i in range(default_shape[0]):
         temp_img = np.copy(threshold_img[i])
         filled_img[i] = binary_fill_holes(temp_img)
     print('2d holes filled.')
     print('binary processing complete.')
     # DISTANCE AND MAXIMA TRANFORMATIONS TO FIND CELLS
     # next two steps assume 60x objective
     print('generating distance map...')
     dist_map = np.zeros(shape=default_shape, dtype='float32')
     #Goes through each time course separately and distance map.
     for i in range(default_shape[0]):
         temp_img = np.copy(filled_img[i])
         dist_map[i] = distance_transform_edt(temp_img, sampling=(1, 1))
     print('distance map complete.')
     print('smoothing distance map...')
     smooth_dist = np.zeros(shape=default_shape, dtype='float32')
     #Goes through each timecourse separately and creates a smoothed distance map.
     for i in range(default_shape[0]):
         temp_img = np.copy(dist_map[i])
         smooth_dist[i] = gaussian_filter(temp_img, [4, 4])
     print('distance map smoothed.')
     print('identifying maxima...')
     max_strel_2d = generate_binary_structure(2, 2)
     maxima = np.zeros(shape=default_shape, dtype='float32')
     for i in range(default_shape[0]):
         maxima[i] = maximum_filter(
             smooth_dist[i], footprint=max_strel_2d) == smooth_dist[i]
         bgrd_2d = smooth_dist[i] == 0
         eroded_background_2d = binary_erosion(bgrd_2d,
                                               structure=max_strel_2d,
                                               border_value=1)
         maxima[i] = np.logical_xor(maxima[i], eroded_background_2d)
     print('maxima identified.')
     # WATERSHED SEGMENTATION
     labs = np.zeros(shape=default_shape, dtype='float32')
     for i in range(default_shape[0]):
         labs[i] = self.watershed_labels(maxima[i])
     print('watershedding...')
     cells = np.zeros(shape=default_shape, dtype='float32')
     for i in range(default_shape[0]):
         cells[i] = watershed(-smooth_dist[i], labs[i], mask=filled_img[i])
     print('raw watershedding complete.')
     print('cleaning up cells...')
     clean_cells = np.zeros(shape=default_shape, dtype='float32')
     for i in range(default_shape[0]):
         clean_cells[i] = self.reassign_pixels_2d(cells[i])
     print('cell cleanup complete.')
     print('SEGMENTATION OPERATION COMPLETE.')
     endtime = time.time()
     runningtime = endtime - starttime
     print('time elapsed: ' + str(runningtime) + ' seconds')
     cell_num = [[] for f in range(default_shape[0])]
     volume = [[] for f in range(default_shape[0])]
     #Assigns a cell number and volume for each segmented cell in the timecourse.
     for i in range(default_shape[0]):
         cell_num[i], volume[i] = np.unique(clean_cells[i],
                                            return_counts=True)
     for j in range(default_shape[0]):
         cell_num[j] = cell_num[j].astype('uint16')
         volume[j] = volume[j].astype('uint16')
     cell_nums = [[] for f in range(default_shape[0])]
     volumes = [[] for f in range(default_shape[0])]
     #Creates a dictionary to match cell number to its volume as determined by 2D number of pixels.
     for k in range(default_shape[0]):
         volumes[k] = dict(zip(cell_num[k], volume[k]))
         cell_nums[k] = cell_num[k][np.nonzero(cell_num[k])]
     #Deletes any artifacts that have a volume of 0.
     for vol in range(len(volumes)):
         if 0 in volumes[vol]:
             del volumes[vol][0]
         del volumes[vol][0]
     #Determines the distance from center in order to determine which cell is the mother.
     print('determining distances...')
     distances = self.avg_distance_from_center(clean_cells)
     print('distances determined.')
     mother = [[] for f in range(default_shape[0])]
     #Determines which cell is the mother basedo n the smallest distance and determines if that cell has the largest volume.
     for j in range(default_shape[0]):
         if volumes[j] == {} or distances[j] == {}:
             pass
         else:
             if self.keywithmaxval(volumes[j]) == self.keywithminval(
                     distances[j]):
                 mother[j] = self.keywithminval(distances[j])
                 print(j)
             else:
                 mother[j] = self.keywithminval(distances[j])
                 print(
                     'Maximum size does not agree with minimum distance! Mother may be incorrect, assuming min distance.'
                 )
                 print(j)
     mother_cell = np.copy(clean_cells)
     print('eliminating all but mother cell...')
     #Eliminates the masks for all cells that are not the mother and reassigns the mother's number to 1.
     for frame in range(default_shape[0]):
         mother_cell[frame] = np.copy(clean_cells[frame])
         mother_cell[frame][clean_cells[frame] != mother[frame]] = 0
         mother_cell[frame][mother_cell[frame] > 0] = 1
     print('mothers produced.')
     mother_num = [[] for f in range(default_shape[0])]
     new_volume = [[] for f in range(default_shape[0])]
     #Reassigns mother cells volume calculated previously.
     for i in range(default_shape[0]):
         mother_num[i], new_volume[i] = np.unique(mother_cell[i],
                                                  return_counts=True)
     for j in range(default_shape[0]):
         mother_cell[j] = mother_cell[j].astype('uint16')
         new_volume[j] = new_volume[j].astype('uint16')
     mother_nums = [[] for f in range(default_shape[0])]
     new_volumes = [[] for f in range(default_shape[0])]
     for k in range(default_shape[0]):
         new_volumes[k] = dict(zip(mother_num[k], new_volume[k]))
         mother_nums[k] = mother_num[k][np.nonzero(mother_num[k])]
     for vol in range(len(new_volumes)):
         del new_volumes[vol][0]
     return SegmentObj(f_directory, self.filename, raw_img, self.threshold,
                       threshold_img, filled_img, dist_map, smooth_dist,
                       maxima, labs, cells, clean_cells, cell_nums, volumes,
                       mother_cell, mother_nums, new_volumes)
def watershed_segmentation(num, img, thresh, gray, manual, outline):
    master_data = []
    target = []
    clean = img.copy()
    cleanContours = np.ones((1000, 1000, 3)) * 255
    #    cv2.imshow('clean', clean)
    #    cv2.waitKey(0)
    #    cv2.destroyAllWindows()
    D = ndimage.distance_transform_edt(thresh)
    localMax = peak_local_max(D, indices=False, min_distance=20, labels=thresh)

    # perform a connected component analysis on the local peaks,
    # using 8-connectivity, then appy the Watershed algorithm
    markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
    labels = watershed(-D, markers, mask=thresh)
    count = 1
    for label in np.unique(labels):
        # if the label is zero, we are examining the 'background'
        # so simply ignore it
        if label == 0:
            continue

        # otherwise, allocate memory for the label region and draw
        # it on the mask
        mask = np.zeros(gray.shape, dtype="uint8")
        mask[labels == label] = 255

        # detect contours in the mask and grab the largest one
        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)[-2]
        cleanContours = cv2.drawContours(cleanContours, cnts, -1, (255, 0, 0),
                                         1)
        c = max(cnts, key=cv2.contourArea)
        if c.shape[0] >= 5:
            if manual:
                manual_label(c, clean, target)
#            features = extractFeatures(c)
#            master_data.append(features)
            x, y, w, h = cv2.boundingRect(c)
            if outline:
                roi = cleanContours[y:y + h, x:x + w]
                height = np.size(roi, 0)
                width = np.size(roi, 1)
                #            cv2.fillPoly(img, pts =[contours], color=(255,255,255))
                print(width, height)
                print((128 - w) / 2., (128 - h) / 2.)
                top = int(math.ceil((128 - h) / 2.))
                bottom = int(math.floor((128 - h) / 2.))
                left = int(math.ceil((128 - w) / 2.))
                right = int(math.floor((128 - w) / 2.))
                roi = cv2.copyMakeBorder(roi, top, bottom, left, right,
                                         cv2.BORDER_CONSTANT, None,
                                         (255, 255, 255))
                cv2.imwrite(
                    rootpath +
                    "\Images\cells_new\{0}_c{1}.png".format(num, count), roi)
            else:
                roi = clean[y:y + h, x:x + w]
                #                cv2.imwrite(rootpath + "\Images\cells_out\{0}_c{1}.png".format(num, count), roi)
                cv2.imwrite(
                    rootpath + "\output\{0}_c{1}.png".format(num, count), roi)
        count += 1


#    print num, count
    return master_data, target
local_maxi = peak_local_max(img2, indices=False, min_distance = 1)
imgm2 = img2.copy();
imgm2[local_maxi] = 3 * imgm2.max();
plt.subplot(2,2,3);
plt.imshow(imgm2,  cmap=plt.cm.jet, interpolation='nearest')

local_maxi = peak_local_max(img, indices=False, min_distance = 5)
imgm = img.copy();
imgm[local_maxi] = 3 * imgm.max();
plt.subplot(2,2,4);
plt.imshow(imgm,  cmap=plt.cm.jet, interpolation='nearest')


markers = ndi.label(local_maxi)[0]
labelsws = watershed(-img, markers, mask = None);
labels = labelsws.copy();

labels.max()

#if False:
#  cls = [[1], range(2,6), range(6, 11), range(11,21), range(21, 26), range(26,31)];
#  cls = [range(1,3), range(3, 11), range(11,31)];
#  for i, c in enumerate(cls):
#    for cc in c:
#      labels[labelsws == cc] = i;

fig, axes = plt.subplots(ncols=3, sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'})
ax0, ax1, ax2 = axes
ax0.imshow(img, cmap=plt.cm.jet, interpolation='nearest')
ax0.set_title('PDF')
示例#35
0
#    plt.imshow(np.ma.array(green_max,mask=green_max==0),interpolation='none')
#    plt.show()

#------------------------------------------------------------------------------

# SEGMENTATION: EXPANSION BY WATERSHED
# Watershedding is a relatively simple but powerful algorithm for expanding
# seeds. The image intensity is considered as a topographical map (with high
# intensities being "mountains" and low intensities "valleys") and water is
# poured into the valleys from each of the seeds. The water first labels the
# lowest intensity pixels around the seeds, then continues to fill up. The cell
# boundaries are where the waterfronts between different seeds touch.

# Get the watershed function and run it
from skimage.morphology import watershed
green_ws = watershed(green_smooth, green_max)

# Show result as transparent overlay
# Note: For a better visualization, see "FINDING CELL EDGES" below!
#    plt.imshow(green_smooth,cmap='gray',interpolation='none')
#    plt.imshow(green_ws,interpolation='none',alpha=0.7)
#    plt.show()

# Notice that the previously connected cells are now mostly separated and the
# membranes are partitioned to their respective cells.
# ...however, we now see a few cases of oversegmentation!
# This is a typical example of the trade-offs one has to face in any
# computational classification task.

#------------------------------------------------------------------------------
示例#36
0
def segmentByClustering(rgbImage, colorSpace, clusteringMethod,
                        numberOfClusters):
    #import dataset function from main
    #Import function check_dataset
    from main import check_dataset
    #download dataset and unzip it
    check_dataset()
    #Import libraries
    import matplotlib.pyplot as plt
    #import os
    import os
    #import io, color
    from skimage import io, color
    import numpy as np
    from sklearn.cluster import KMeans
    from sklearn.mixture import GaussianMixture
    from sklearn.cluster import AgglomerativeClustering
    from skimage.feature import peak_local_max
    from skimage.morphology import watershed
    from scipy import ndimage
    import cv2
    from main import imshow
    from scipy import misc
    from skimage.transform import resize

    #get the current cwd
    #cwd = os.getcwd()
    #get the image path
    #img_file = os.path.join('BSDS_small',rgbImage)
    img_file = 'BSR' + '/' + 'BSDS500' + '/' + 'data' + '/' + 'images' + '/' + 'test' + '/' + rgbImage

    #show the groundtruth segmentation
    #groundtruth(img_file)
    #show the groundtruth edges
    #    from main import groundtruth_edges
    #    groundtruth_edges(img_file)
    #read the image (rgb)
    imag = io.imread(img_file)
    from skimage.filters import gaussian
    rgb = gaussian(imag, sigma=1.5, multichannel=True)

    #Check all possible color spaces

    #HSV color space
    if (colorSpace == 'hsv'):
        #convert rgb2hsv
        hsv = color.rgb2hsv(rgb)
        hsv = cv2.normalize(hsv,
                            np.zeros((hsv.shape), dtype=np.uint8),
                            alpha=0,
                            beta=255,
                            norm_type=cv2.NORM_MINMAX,
                            dtype=cv2.CV_8U)
        #return hsv
        #plot the image in hsv
        #plt.imshow(hsv)
        #plt.show()
        #shape of the image
        (fils, cols, channels) = hsv.shape

        #Check all clustering Methods

        #Kmeans
        if (clusteringMethod == 'kmeans'):
            #reshape the image for kmeans
            X = hsv.reshape(fils * cols, 3)
            #Convert data to float
            #X.astype(float)
            #kmeans with numberofClusters as a parameter
            kmeans = KMeans(n_clusters=numberOfClusters, random_state=0).fit(X)
            #obtaining the segmented image
            segmented_img = kmeans.cluster_centers_[kmeans.labels_]
            #reshape the image to the original size
            segmented_img = kmeans.labels_
            #reshape labels to obtain 2d image
            segmented_img = segmented_img.reshape((fils, cols))
            #show the segmentation
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = hsv.reshape(fils * cols, 3)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            hsv2 = resize(hsv, (int(hsv.shape[0] / 4), int(hsv.shape[1] / 4)),
                          anti_aliasing=True)
            hsv2 = cv2.normalize(hsv2,
                                 np.zeros((hsv2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = hsv2.shape
            X = hsv2.reshape(fils * cols, 3)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='manhattan',
                                              linkage='complete')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            segmented_img = misc.imresize(segmented_img,
                                          (hsv.shape[0], hsv.shape[1]),
                                          interp='bicubic')
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            hsv = np.mean(hsv, axis=2)
            local_maxima = peak_local_max(-1 * hsv,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(hsv, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

    #Check lab color space
    elif (colorSpace == 'lab'):
        #convert rgb image to lab
        lab = color.rgb2lab(rgb)
        lab = cv2.normalize(lab,
                            np.zeros((lab.shape), dtype=np.uint8),
                            alpha=0,
                            beta=255,
                            norm_type=cv2.NORM_MINMAX,
                            dtype=cv2.CV_8U)
        #show of the image in lab color space
        #shape of the image
        (fils, cols, channels) = lab.shape

        #Check all possible clustering methods
        #Kmeans
        if (clusteringMethod == 'kmeans'):
            #reshape the image for kmeans
            X = lab.reshape(fils * cols, 3)
            #Convert data to float
            #X.astype(float)
            #kmeans with numberofClusters as a parameter
            kmeans = KMeans(n_clusters=numberOfClusters, random_state=0).fit(X)
            #obtaining the segmented image (labels)
            segmented_img = kmeans.labels_
            #reshape labels to obtain 2d image
            segmented_img = segmented_img.reshape((fils, cols))
            #convert it to uint8
            #segmented_img = segmented_img.astype(np.uint8)
            #show the segmentation
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = lab.reshape(fils * cols, 3)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            lab2 = resize(lab, (int(lab.shape[0] / 4), int(lab.shape[1] / 4)),
                          anti_aliasing=True)
            lab2 = cv2.normalize(lab2,
                                 np.zeros((lab2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = lab2.shape
            X = lab2.reshape(fils * cols, 3)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='euclidean',
                                              linkage='ward')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            segmented_img = misc.imresize(segmented_img,
                                          (rgb.shape[0], rgb.shape[1]),
                                          interp='bicubic')
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            lab = np.mean(lab, axis=2)
            local_maxima = peak_local_max(-1 * lab,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(lab, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

    #Check rgb+xy color space
    elif (colorSpace == 'rgb_xy'):
        #size of the image
        (fils, cols, channels) = rgb.shape
        pos_x = np.ones((fils, cols), dtype='uint8')
        pos_y = np.ones((fils, cols), dtype='uint8')
        for i in range(0, fils):
            for j in range(0, cols):
                pos_x[i, :] = i
                pos_y[:, j] = j
        pos_x = cv2.normalize(pos_x,
                              np.zeros((pos_x.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        pos_y = cv2.normalize(pos_y,
                              np.zeros((pos_y.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        rgb_xy = np.dstack((rgb, pos_x, pos_y))

        if (clusteringMethod == 'kmeans'):
            X = rgb_xy.reshape(fils * cols, 5)
            #X.astype(float)
            kmeans = KMeans(n_clusters=numberOfClusters, random_state=0).fit(X)
            segmented_img = kmeans.labels_
            segmented_img = segmented_img.reshape((fils, cols))
            #segmented_img = segmented_img.astype(np.uint8)
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = rgb_xy.reshape(fils * cols, 5)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            #X = rgb_xy.reshape(fils*cols, 5)
            rgb2 = resize(rgb, (int(rgb.shape[0] / 4), int(rgb.shape[1] / 4)),
                          anti_aliasing=True)
            rgb2 = cv2.normalize(rgb2,
                                 np.zeros((rgb2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = rgb2.shape
            pos_x = np.ones((fils, cols), dtype='uint8')
            pos_y = np.ones((fils, cols), dtype='uint8')
            for i in range(0, fils):
                for j in range(0, cols):
                    pos_x[i, :] = i
                    pos_y[:, j] = j
            rgb_xy = np.dstack((rgb2, pos_x, pos_y))
            X = rgb_xy.reshape(fils * cols, 5)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='euclidean',
                                              linkage='ward')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            segmented_img = misc.imresize(segmented_img,
                                          (rgb.shape[0], rgb.shape[1]),
                                          interp='nearest')
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            rgb_xy = np.mean(rgb, axis=2)
            local_maxima = peak_local_max(-1 * rgb_xy,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(rgb_xy, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

    elif (colorSpace == 'lab_xy'):
        #size of the image
        lab = color.rgb2lab(rgb)
        lab2 = cv2.normalize(lab,
                             np.zeros((lab.shape), dtype=np.uint8),
                             alpha=0,
                             beta=255,
                             norm_type=cv2.NORM_MINMAX,
                             dtype=cv2.CV_8U)
        (fils, cols, channels) = lab.shape
        pos_x = np.ones((fils, cols))  #dtype='uint8')
        pos_y = np.ones((fils, cols))  #dtype='uint8')
        for i in range(0, fils):
            for j in range(0, cols):
                pos_x[i, :] = i
                pos_y[:, j] = j
        pos_x = cv2.normalize(pos_x,
                              np.zeros((pos_x.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        pos_y = cv2.normalize(pos_y,
                              np.zeros((pos_y.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        lab_xy = np.dstack((lab, pos_x, pos_y))

        if (clusteringMethod == 'kmeans'):
            X = lab_xy.reshape(fils * cols, 5)
            #X.astype(float)
            kmeans = KMeans(n_clusters=numberOfClusters).fit(X)
            segmented_img = kmeans.labels_
            segmented_img = segmented_img.reshape((fils, cols))
            #segmented_img = segmented_img.astype(np.uint8)
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = lab_xy.reshape(fils * cols, 5)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            lab2 = resize(lab, (int(lab.shape[0] / 4), int(lab.shape[1] / 4)),
                          anti_aliasing=True)
            lab2 = cv2.normalize(lab2,
                                 np.zeros((lab2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = lab2.shape
            pos_x = np.ones((fils, cols), dtype='uint8')
            pos_y = np.ones((fils, cols), dtype='uint8')
            for i in range(0, fils):
                for j in range(0, cols):
                    pos_x[i, :] = i
                    pos_y[:, j] = j
            lab_xy = np.dstack((lab2, pos_x, pos_y))
            X = lab_xy.reshape(fils * cols, 5)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='euclidean',
                                              linkage='ward')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            segmented_img = misc.imresize(segmented_img,
                                          (lab.shape[0], lab.shape[1]),
                                          interp='bicubic')
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            lab_xy = np.mean(lab, axis=2)
            local_maxima = peak_local_max(-1 * lab_xy,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(lab_xy, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

        #Check if the color space is hsv
    elif (colorSpace == 'hsv_xy'):
        #size of the image
        hsv = color.rgb2hsv(rgb)
        hsv = cv2.normalize(hsv,
                            np.zeros((hsv.shape), dtype=np.uint8),
                            alpha=0,
                            beta=255,
                            norm_type=cv2.NORM_MINMAX,
                            dtype=cv2.CV_8U)
        (fils, cols, channels) = hsv.shape
        pos_x = np.ones((fils, cols), dtype='uint8')
        pos_y = np.ones((fils, cols), dtype='uint8')
        for i in range(0, fils):
            for j in range(0, cols):
                pos_x[i, :] = i
                pos_y[:, j] = j
        pos_x = cv2.normalize(pos_x,
                              np.zeros((pos_x.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        pos_y = cv2.normalize(pos_y,
                              np.zeros((pos_y.shape), dtype=np.uint8),
                              alpha=0,
                              beta=255,
                              norm_type=cv2.NORM_MINMAX,
                              dtype=cv2.CV_8U)
        hsv_xy = np.dstack((hsv, pos_x, pos_y))

        if (clusteringMethod == 'kmeans'):
            X = hsv_xy.reshape(fils * cols, 5)
            #X.astype(float)
            kmeans = KMeans(n_clusters=numberOfClusters, random_state=0).fit(X)
            segmented_img = kmeans.labels_
            segmented_img = segmented_img.reshape((fils, cols))
            #segmented_img = segmented_img.astype(np.uint8)
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = hsv_xy.reshape(fils * cols, 5)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            hsv2 = resize(hsv, (int(hsv.shape[0] / 4), int(hsv.shape[1] / 4)),
                          anti_aliasing=True)
            hsv2 = cv2.normalize(hsv2,
                                 np.zeros((hsv2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = hsv2.shape
            pos_x = np.ones((fils, cols), dtype='uint8')
            pos_y = np.ones((fils, cols), dtype='uint8')
            for i in range(0, fils):
                for j in range(0, cols):
                    pos_x[i, :] = i
                    pos_y[:, j] = j
            hsv_xy = np.dstack((hsv2, pos_x, pos_y))
            X = hsv_xy.reshape(fils * cols, 5)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='euclidean',
                                              linkage='ward')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            #hsv_xy=hsv_xy[:,:,2]
            hsv_xy = np.mean(hsv, axis=2)
            local_maxima = peak_local_max(-1 * hsv_xy,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(hsv_xy, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

    elif (colorSpace == 'rgb'):
        (fils, cols, channels) = rgb.shape

        if (clusteringMethod == 'kmeans'):
            X = rgb.reshape(fils * cols, 3)
            #X.astype(float)
            kmeans = KMeans(n_clusters=numberOfClusters, random_state=0).fit(X)
            segmented_img = kmeans.labels_
            segmented_img = segmented_img.reshape((fils, cols))
            #segmented_img = segmented_img.astype(np.uint8)
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'gmm'):
            X = rgb.reshape(fils * cols, 3)
            gmm = GaussianMixture(n_components=numberOfClusters)
            gmm = gmm.fit(X)
            cluster = gmm.predict(X)
            cluster = cluster.reshape(fils, cols)
            #cluster = cluster.astype(np.uint8)
            segmented_img = cluster
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'hierarchical'):
            rgb2 = resize(rgb, (int(rgb.shape[0] / 4), int(rgb.shape[1] / 4)),
                          anti_aliasing=True)
            rgb2 = cv2.normalize(rgb2,
                                 np.zeros((rgb2.shape), dtype=np.uint8),
                                 alpha=0,
                                 beta=255,
                                 norm_type=cv2.NORM_MINMAX,
                                 dtype=cv2.CV_8U)
            (fils, cols, channels) = rgb2.shape
            X = rgb2.reshape(fils * cols, 3)
            cluster = AgglomerativeClustering(n_clusters=numberOfClusters,
                                              affinity='euclidean',
                                              linkage='ward')
            cluster.fit_predict(X)
            labels = cluster.labels_
            segmented_img = labels.reshape(fils, cols)
            #segmented_img = segmented_img.astype(np.uint8)
            segmented_img = misc.imresize(segmented_img,
                                          (rgb.shape[0], rgb.shape[1]),
                                          interp='bicubic')
            #imshow(rgb,segmented_img,title = rgbImage)

        elif (clusteringMethod == 'watershed'):
            rgb = np.mean(rgb, axis=2)
            local_maxima = peak_local_max(-1 * rgb,
                                          min_distance=15,
                                          indices=False,
                                          num_peaks=numberOfClusters)
            marks = ndimage.label(local_maxima)[0]
            segmented_img = watershed(rgb, marks)
            segmented_img = segmented_img
            #imshow(rgb,segmented_img, title= rgbImage)

    return segmented_img
示例#37
0
def nucleus_finder_dt(stack_in, name_in, smooth_type, smooth_size, cont_size,
                      thresh_type, erode, min_radius, max_radius, test, plot,
                      save):
    print('smooth_size', smooth_size)
    print('cont_size', cont_size)
    print('thresh_type', thresh_type)
    print('erode', erode)
    print('min_radius', min_radius)
    print('max_radius', max_radius)
    print('test', test)
    print('save', save)

    # stack_in = stack_in.max(axis=0)
    # z_size=1
    z_size, y_size, x_size = int(np.shape(stack_in)[0]), int(
        np.shape(stack_in)[1]), int(np.shape(stack_in)[2])
    nuclei_count = []

    # Need to determine global threshold based on max intensity projetion that has
    # undergone same preprocessing as the stacks undergo
    max_int_proj = stack_in.max(axis=0)
    max_int_proj = preprocessor.smooth(np.copy(max_int_proj), smooth_type,
                                       smooth_size, cont_size)
    max_int_proj = preprocessor.contrast(np.copy(max_int_proj), cont_size)
    thresh = preprocessor.threshold(np.copy(max_int_proj), thresh_type)

    ####################################################################
    # Currently cluster in x and y then z separately - must fix this
    ####################################################################
    for im in range(0, z_size):
        image = stack_in[im]
        smoothed = preprocessor.smooth(np.copy(image), smooth_type,
                                       smooth_size, cont_size)
        smoothed = preprocessor.contrast(np.copy(smoothed), cont_size)
        # thresh = preprocessor.threshold(np.copy(smoothed), thresh_type)
        binary = smoothed > thresh
        # binary_closed = binary_closing(binary)
        binary_closed = binary_fill_holes(binary)

        if erode > 0:
            print('Performing', str(erode), 'binary erosions')
            eroded = binary_closed
            # n_erodes = min_radius // 2
            for i in range(0, erode):
                eroded = binary_erosion(eroded)
        elif erode == 0:
            eroded = binary_closed

        # Distance transform and threshold thereof
        distance = ndimage.distance_transform_edt(eroded)
        distance = distance > min_radius
        distance = ndimage.distance_transform_edt(distance)

        # Only look for local maxima if there's anything left after erosion:
        if len(np.where(distance != 0)[0]) == 0:
            print('Zero distance matrix')
            labeled = np.zeros_like(image)
            preprocessor.testplot(image, im, [], [], [], [], smoothed,
                                  binary_closed, eroded, distance, labeled)
            continue

        # local_maxi = peak_local_max(distance, min_radius, exclude_border=False, indices=False, labels=smoothed)
        local_maxi = peak_local_max(distance,
                                    exclude_border=False,
                                    indices=False,
                                    footprint=square(3),
                                    labels=smoothed)
        # local_maxi = local_maxima(distance)
        x, y = np.where(local_maxi != False)[1], np.where(
            local_maxi != False)[0]

        # List for storing x and y-coords on each slice
        x_slice, y_slice = [], []
        if len(x) == 0:
            print('No peaks detected')

        if len(x) == 1:
            print('Only one maximum detected')
            dist_non_zero = np.where(distance != 0)
            print(dist_non_zero)
            # Label the 1 remaining region
            labeled = distance
            labeled[dist_non_zero] = 1
            labeled = labeled.astype(int)
            print(labeled[np.where(labeled != 0)])
            f_prop = regionprops(labeled, intensity_image=image)
            for d in f_prop:
                print('len(f_prop)', len(f_prop))
                radius = (d.area / np.pi)**0.5
                nuclei_count.append([
                    d.weighted_centroid[1], d.weighted_centroid[0], im, d.area,
                    radius, d.mean_intensity * d.area
                ])
                x_slice.append(d.weighted_centroid[1])
                y_slice.append(d.weighted_centroid[0])

            # Produce test plot
            preprocessor.testplot(image, im, x, y, x_slice, y_slice, smoothed,
                                  binary_closed, eroded, distance, labeled)

        if len(x) > 1:
            # Use hierarchical clustering algorithm to cluster maxima
            # Could alternatively use structure-based labelling
            print('Detected', str(len(x)), 'peaks')
            positions = np.stack((y, x), axis=1)
            # Distance matrix is n-particles x n-particles in size
            # This gives the upper triangle of the distance matrix
            dist_mat = dist.pdist(positions)
            link_mat = hier.linkage(dist_mat)
            # fcluster assigns each of the particles in positions a cluster to which it belongs
            cluster_idx = hier.fcluster(link_mat,
                                        min_radius,
                                        criterion='distance')
            particles = np.unique(cluster_idx)

            markers = np.zeros_like(smoothed)
            markers[y, x] = cluster_idx

            # markers = ndimage.label(local_maxi, structure=square(3))[0]
            # Now that maxima have been clustered, label them by watershedding
            labeled = watershed(-distance, markers, mask=binary)

            f_prop = regionprops(labeled, intensity_image=image)
            for d in f_prop:
                radius = (d.area / np.pi)**0.5
                nuclei_count.append([
                    d.weighted_centroid[1], d.weighted_centroid[0], im, d.area,
                    radius, d.mean_intensity * d.area
                ])
                x_slice.append(d.weighted_centroid[1])
                y_slice.append(d.weighted_centroid[0])
        #Plot binary and watershedded images showing identified peaks
        if test == True:
            vis.testplot(image, name_in, im, x, y, x_slice, y_slice, smoothed,
                         binary_closed, eroded, distance, labeled)

    # Now we've scanned all the way through the stack and located things
    # we think are nuclei in each place. Now we need to cluster them in 3D so
    # we link together the slices
    values = []
    if len(nuclei_count) > 1:
        # Cluster nuclei
        columns = ('x', 'y', 'z', 'area', 'radius', 'intensity')
        nuclei_count = pd.DataFrame(nuclei_count, columns=columns)

        # Now cluster nuclei by x, y coordinates
        positions = np.stack(
            (nuclei_count['x'].values, nuclei_count['y'].values,
             nuclei_count['z'].values),
            axis=1)
        dist_mat = dist.pdist(positions)
        link_mat = hier.linkage(dist_mat)
        cluster_idx = hier.fcluster(link_mat, min_radius, criterion='distance')
        particles = np.unique(cluster_idx)

        # Calculate weighted average position of particles
        nuclei_count['particle'] = cluster_idx
        for j in particles:
            current = nuclei_count[nuclei_count['particle'] == j]
            # Normalisation constant of weighted average
            norm = np.sum(current['intensity'])
            x_av = np.sum(current['intensity'] * current['x']) / norm
            y_av = np.sum(current['intensity'] * current['y']) / norm
            z_av = np.sum(current['intensity'] * current['z']) / norm
            a_max = np.amax(current['area'])
            # Exclude nuclei on minimum intensity
            if norm > 10000:
                values.append([x_av, y_av, z_av, a_max, norm])

    # Data Frame containing the weighted averages of the locations of the particles
    columns = ('x', 'y', 'z', 'a_max', 'total_intensity')
    nuclei_averaged = pd.DataFrame(values, columns=columns)
    print('Found', len(nuclei_averaged), 'nuclei')

    if plot == True:
        # Numbers purely for visualisation purposes
        plt.clf()
        xy_scale, z_scale = 1., 2.
        # Plot 3D visualisation of data
        fig = plt.figure(figsize=(12, 12))
        # xy projection:
        ax_xy = fig.add_subplot(111)
        ax_xy.imshow(stack_in.max(axis=0), cmap='gray')
        ax_xy.scatter(nuclei_averaged['x'],
                      nuclei_averaged['y'],
                      facecolors='none',
                      edgecolors='red',
                      s=100)

        divider = make_axes_locatable(ax_xy)
        ax_zx = divider.append_axes("top", 2, pad=0.2, sharex=ax_xy)
        ax_zx.imshow(stack_in.max(axis=1),
                     aspect=z_scale / xy_scale,
                     cmap='gray')
        ax_zx.scatter(nuclei_averaged['x'],
                      nuclei_averaged['z'],
                      facecolors='none',
                      edgecolors='red',
                      s=100)
        ax_yz = divider.append_axes("right", 2, pad=0.2, sharey=ax_xy)
        ax_yz.imshow(stack_in.max(axis=2).T,
                     aspect=xy_scale / z_scale,
                     cmap='gray')
        ax_yz.scatter(nuclei_averaged['z'],
                      nuclei_averaged['y'],
                      facecolors='none',
                      edgecolors='red',
                      s=100)
        plt.draw()

    if save == True:
        outname = name_in + '_nuclei_py.tif'
        plt.savefig(outname, bbox_inches='tight')
        print(outname, 'saved')
        plt.close()

    return nuclei_averaged
示例#38
0
def nps_finder_2d_stack(image_in,
                        name_in,
                        z_in=0,
                        thresh_type='yen',
                        smooth_type='mean',
                        smooth_size=1,
                        gauss_size=0,
                        cont_size=0,
                        sep_method='watershed',
                        mass_cutoff=200,
                        area_cutoff=0,
                        max_radius=5,
                        min_radius=1,
                        test=True):
    # np.copy() used because peak_local_max does weird things to the image histogram if we use the actual image
    print('mass_cutoff is', mass_cutoff)
    y_size, x_size = np.shape(image_in)
    smoothed = np.copy(image_in)

    # Calculate threshold
    thresh = preprocessor.threshold(np.copy(smoothed), thresh_type)
    print('thresh is', thresh)
    im_max = smoothed.max()
    print('im_max is', im_max)
    binary = smoothed > thresh

    # Two approaches
    # 1. Identify local maxima in real-space image - separate by watershedding
    if sep_method == 'old_watershed':
        print('old_watershed')
        local_maxi = peak_local_max(np.copy(smoothed),
                                    min_distance=min_radius,
                                    threshold_abs=thresh,
                                    indices=False,
                                    labels=np.copy(smoothed))
        labeled_image = ndimage.label(local_maxi, structure=disk(1))[0]
        # markers = ndimage.label(local_maxi)[0]
        labeled_image = watershed(-labeled_image, labeled_image, mask=binary)
        # print(labeled_image)

    if sep_method == 'binary_label':
        print('binary_label')
        labeled_image = ndimage.label(binary, structure=disk(1))[0]
        # print(labeled_image)

    if sep_method == 'peak_label':
        print('peak_label')
        local_maxi = peak_local_max(np.copy(smoothed),
                                    min_distance=min_radius,
                                    threshold_abs=thresh,
                                    indices=False,
                                    labels=np.copy(smoothed))
        labeled_image = ndimage.label(local_maxi, structure=disk(1))[0]
        # print(labeled_image)

    columns = ('x', 'y', 'area', 'intensity')
    if len(np.where(labeled_image != 0)[0]) == 0:
        properties = pd.DataFrame([], columns=columns)
    if len(np.where(labeled_image != 0)[0]) > 0:
        f_prop = regionprops(labeled_image, intensity_image=smoothed)
        properties = []
        for d in f_prop:
            properties.append([
                d.weighted_centroid[1], d.weighted_centroid[0], d.area,
                d.mean_intensity * d.area
            ])
        properties = pd.DataFrame(properties, columns=columns)

    if test == True:
        preprocessor.testplot_parts(image_in, name_in, z_in, properties['x'],
                                    properties['y'], smoothed, binary,
                                    labeled_image)

    return properties
示例#39
0
def watershed_segmentation(rgb_img, mask, distance=10):
    """Uses the watershed algorithm to detect boundary of objects. Needs a marker file which specifies area which is
       object (white), background (grey), unknown area (black).

    Inputs:
    rgb_img             = image to perform watershed on needs to be 3D (i.e. np.shape = x,y,z not np.shape = x,y)
    mask                = binary image, single channel, object in white and background black
    distance            = min_distance of local maximum

    Returns:
    watershed_header    = shape data table headers
    watershed_data      = shape data table values
    analysis_images     = list of output images

    :param rgb_img: numpy.ndarray
    :param mask: numpy.ndarray
    :param distance: int
    :return watershed_header: list
    :return watershed_data: list
    :return analysis_images: list
    """

    # # Will be depricating opencv version 2
    # if cv2.__version__[0] == '2':
    #     dist_transform = cv2.distanceTransform(mask, cv2.cv.CV_DIST_L2, maskSize=0)
    # else:
    dist_transform = cv2.distanceTransformWithLabels(mask, cv2.DIST_L2, maskSize=0)[0]

    localMax = peak_local_max(dist_transform, indices=False, min_distance=distance, labels=mask)

    markers = ndi.label(localMax, structure=np.ones((3, 3)))[0]
    dist_transform1 = -dist_transform
    labels = watershed(dist_transform1, markers, mask=mask)

    img1 = np.copy(rgb_img)

    for x in np.unique(labels):
        rand_color = color_palette(len(np.unique(labels)))
        img1[labels == x] = rand_color[x]

    img2 = apply_mask(img1, mask, 'black')

    joined = np.concatenate((img2, rgb_img), axis=1)

    estimated_object_count = len(np.unique(markers)) - 1

    analysis_image = []
    analysis_image.append(joined)

    watershed_header = (
        'HEADER_WATERSHED',
        'estimated_object_count'
    )

    watershed_data = (
        'WATERSHED_DATA',
        estimated_object_count
    )

    if params.debug == 'print':
        print_image(dist_transform, os.path.join(params.debug_outdir, str(params.device) + '_watershed_dist_img.png'))
        print_image(joined, os.path.join(params.debug_outdir, str(params.device) + '_watershed_img.png'))
    elif params.debug == 'plot':
        plot_image(dist_transform, cmap='gray')
        plot_image(joined)

    # Store into global measurements
    if not 'watershed' in outputs.measurements:
        outputs.measurements['watershed'] = {}
    outputs.measurements['watershed']['estimated_object_count'] = estimated_object_count

    # Store images
    outputs.images.append(analysis_image)

    return watershed_header, watershed_data, analysis_image
示例#40
0
markers = np.zeros_like(coins)
markers[coins < 30] = 1
markers[coins > 150] = 2

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax.axis('off')
ax.set_title('markers')
"""
.. image:: PLOT2RST.current_figure

Finally, we use the watershed transform to fill regions of the elevation map
starting from the markers determined above:

"""
segmentation = morphology.watershed(elevation_map, markers)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(segmentation, cmap=plt.cm.gray, interpolation='nearest')
ax.axis('off')
ax.set_title('segmentation')
"""
.. image:: PLOT2RST.current_figure

This last method works even better, and the coins can be segmented and labeled
individually.

"""

from skimage.color import label2rgb
# Segment to connected objects
auto_segmented_smoothed_threshold_mask = measure.label(smoothed_threshold_mask)

# Watershed
from scipy import ndimage as ndi
from skimage.morphology import watershed
from skimage.feature import peak_local_max

distance = ndi.distance_transform_edt(smoothed_threshold_mask)
local_maxi = peak_local_max(distance,
                            indices=False,
                            footprint=np.ones((4, 4)),
                            labels=smoothed_threshold_mask)
markers = ndi.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=smoothed_threshold_mask)
plt.imshow(smoothed_threshold_mask)
plt.show()
plt.imshow(labels)
plt.show()
len(np.unique(labels))

plt.imshow(gray_image, cmap='gray')

#
#from scipy import ndimage
#from skimage import morphology
## Black tophat transformation (see https://en.wikipedia.org/wiki/Top-hat_transform)
#hat = ndimage.black_tophat(gray_image, 7)
## Combine with denoised image
#hat -= 0.3 * gray_image
示例#42
0
#load image
image = cv2.imread(infile)

#convert to greyscale
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

#thresholding
ret, thresh = cv2.threshold(grey, 49, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

#watershed algorithm
D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, indices=False, min_distance=20, labels=thresh)

markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thresh)

for label in np.unique(labels):
    if label == 0:
        continue
    mask = np.zeros(grey.shape, dtype="uint8")
    mask[labels == label] = 255
    contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)
    contours = imutils.grab_contours(contours)

    # draw contours
    drawn = cv2.drawContours(grey, contours, -1, (255, 255, 255), 1)

#drawing a rectangle in which text will live
x, y, w, h = 0, 0, 375, 75
示例#43
0
def watershedContours(image):
    # =============================================================================
    #     # load the image and perform pyramid mean shift filtering
    #     # to aid the thresholding step
    #     shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
    # =============================================================================

    bw = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    _, binarized = cv2.threshold(bw, 20, 255.0, cv2.THRESH_BINARY)
    opened = morphOperation(binarized,
                            operation='opening',
                            times=1,
                            kernel_size=5)
    # =============================================================================
    #     showImage(opened, name="Output")
    # =============================================================================
    closed = morphOperation(opened,
                            operation='closing',
                            times=1,
                            kernel_size=5)
    eroded = eroded = morphOperation(closed,
                                     operation='erosion',
                                     times=1,
                                     kernel_size=35)
    # =============================================================================
    #     showImage(closed, name="Output")
    # =============================================================================

    # compute the exact Euclidean distance from every binary
    # pixel to the nearest zero pixel, then find peaks in this
    # distance map
    D = ndimage.distance_transform_edt(eroded)
    localMax = peak_local_max(D,
                              indices=False,
                              min_distance=30,
                              exclude_border=False)

    # perform a connected component analysis on the local peaks,
    # using 8-connectivity, then appy the Watershed algorithm
    markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
    labels = watershed(-D, markers, mask=closed)

    # loop over the unique labels returned by the Watershed
    # algorithm
    contours = []
    for label in np.unique(labels):
        # if the label is zero, we are examining the 'background'
        # so simply ignore it
        if label == 0:
            continue

        # otherwise, allocate memory for the label region and draw
        # it on the mask
        mask = np.zeros(bw.shape, dtype="uint8")
        mask[labels == label] = 255

        # detect contours in the mask and grab the largest one
        cnts, hierarchy = cv2.findContours(mask.copy(), cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)
        c = max(cnts, key=cv2.contourArea)
        contours.append(c)

    contours = np.array(contours)

    return contours
示例#44
0
image = io.imread(
    '/Users/mahdi/Desktop/1005479.svs (1, 63517, 19793, 927, 1727)1.png', 1)
# denoise image
denoised = rank.median(image, disk(2))

# find continuous region (low gradient -
# where less than 10 for this image) --> markers
# disk(5) is used here to get a more smooth image
markers = rank.gradient(denoised, disk(1)) < 10
markers = ndi.label(markers)[0]

# local gradient (disk(2) is used to keep edges thin)
gradient = rank.gradient(denoised, disk(2))

# process the watershed
labels = watershed(gradient, markers)

# display results
fig, axes = plt.subplots(nrows=2,
                         ncols=2,
                         figsize=(8, 8),
                         sharex=True,
                         sharey=True)
ax = axes.ravel()

ax[0].imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax[0].set_title("Original")

ax[1].imshow(gradient, cmap=plt.cm.nipy_spectral, interpolation='nearest')
ax[1].set_title("Local Gradient")
示例#45
0
def nuclear_expansion_watershed(label, membrane):
    new_labels = morph.watershed(membrane, markers=label, watershed_line=False)
    return new_labels
示例#46
0
# read pixel size information
orig_file = os.path.basename(im_file_list[0]).replace('im_seed_nan_', '')
im = PIL.Image.open(os.path.join(training_dir, orig_file))
xres = 0.0254 / im.info['dpi'][0] * 1e6  # um
yres = 0.0254 / im.info['dpi'][1] * 1e6  # um

# load data
full_dataset, full_file_list, full_shuffle_idx = \
    cytometer.data.load_datasets(im_file_list, prefix_from='im', prefix_to=['im', 'lab'], nblocks=1)

# remove borders between cells in the lab_train data. For this experiment, we want labels touching each other
for i in range(full_dataset['lab'].shape[0]):
    full_dataset['lab'][i, :, :, 0] = watershed(
        image=np.zeros(shape=full_dataset['lab'].shape[1:3],
                       dtype=full_dataset['lab'].dtype),
        markers=full_dataset['lab'][i, :, :, 0],
        watershed_line=False)

# relabel background as "0" instead of "1"
full_dataset['lab'][full_dataset['lab'] == 1] = 0

# plot example of data
if DEBUG:
    i = 0
    plt.clf()
    plt.subplot(121)
    plt.imshow(full_dataset['im'][i, :, :, :])
    plt.subplot(122)
    plt.imshow(full_dataset['lab'][i, :, :, 0])
示例#47
0
 def _skimage_ws(self, NEED_WL):
     return morphology.watershed(self.dist, self.markers,
                                 connectivity=ndimage.generate_binary_structure(3, 3),
                                 watershed_line=NEED_WL)
示例#48
0
            'im', 'lab', 'seg', 'mask', 'predlab_kfold_' + str(i_fold).zfill(2)
        ],
        nblocks=1)
    train_im = datasets['im']
    train_seg = datasets['seg']
    train_mask = datasets['mask']
    train_reflab = datasets['lab']
    train_predlab = datasets['predlab_kfold_' + str(i_fold).zfill(2)]
    del datasets

    # remove borders between labels
    for i in range(train_reflab.shape[0]):
        train_reflab[i, :, :,
                     0] = watershed(image=np.zeros(shape=train_reflab[i, :, :,
                                                                      0].shape,
                                                   dtype=np.uint8),
                                    markers=train_reflab[i, :, :, 0],
                                    watershed_line=False)
    # change the background label from 1 to 0
    train_reflab[train_reflab == 1] = 0

    if DEBUG:
        i = 250
        plt.clf()
        plt.subplot(221)
        plt.imshow(train_im[i, :, :, :])
        plt.subplot(222)
        plt.imshow(train_seg[i, :, :, 0])
        plt.subplot(223)
        plt.imshow(train_reflab[i, :, :, 0])
        plt.subplot(224)
示例#49
0
def watershed_segmentation(rgb_img, mask, distance=10):
    """Uses the watershed algorithm to detect boundary of objects. Needs a marker file which specifies area which is
       object (white), background (grey), unknown area (black).

    Inputs:
    rgb_img             = image to perform watershed on needs to be 3D (i.e. np.shape = x,y,z not np.shape = x,y)
    mask                = binary image, single channel, object in white and background black
    distance            = min_distance of local maximum

    Returns:
    analysis_images     = list of output images

    :param rgb_img: numpy.ndarray
    :param mask: numpy.ndarray
    :param distance: int
    :return analysis_images: list
    """
    params.device += 1

    # Store debug mode
    debug = params.debug
    params.debug = None
    # # Will be depricating opencv version 2
    # if cv2.__version__[0] == '2':
    #     dist_transform = cv2.distanceTransform(mask, cv2.cv.CV_DIST_L2, maskSize=0)
    # else:
    dist_transform = cv2.distanceTransformWithLabels(mask,
                                                     cv2.DIST_L2,
                                                     maskSize=0)[0]

    localMax = peak_local_max(dist_transform,
                              indices=False,
                              min_distance=distance,
                              labels=mask)

    markers = ndi.label(localMax, structure=np.ones((3, 3)))[0]
    dist_transform1 = -dist_transform
    labels = watershed(dist_transform1, markers, mask=mask)

    img1 = np.copy(rgb_img)

    for x in np.unique(labels):
        rand_color = color_palette(len(np.unique(labels)))
        img1[labels == x] = rand_color[x]

    img2 = apply_mask(img1, mask, 'black')

    joined = np.concatenate((img2, rgb_img), axis=1)

    estimated_object_count = len(np.unique(markers)) - 1

    # Reset debug mode
    params.debug = debug
    if params.debug == 'print':
        print_image(
            dist_transform,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_watershed_dist_img.png'))
        print_image(
            joined,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_watershed_img.png'))
    elif params.debug == 'plot':
        plot_image(dist_transform, cmap='gray')
        plot_image(joined)

    outputs.add_observation(variable='estimated_object_count',
                            trait='estimated object count',
                            method='plantcv.plantcv.watershed',
                            scale='none',
                            datatype=int,
                            value=estimated_object_count,
                            label='none')

    # Store images
    outputs.images.append([dist_transform, joined])

    return joined
示例#50
0
文件: rois.py 项目: histedlab/CaImAn
def extract_binary_masks_blob(A,
                              neuron_radius,
                              dims,
                              num_std_threshold=1,
                              minCircularity=0.5,
                              minInertiaRatio=0.2,
                              minConvexity=.8):
    """
    Function to extract masks from data. It will also perform a preliminary selectino of good masks based on criteria like shape and size

    Parameters:
    ----------
    A: scipy.sparse matris
        contains the components as outputed from the CNMF algorithm

    neuron_radius: float
        neuronal radius employed in the CNMF settings (gSiz)

    num_std_threshold: int
        number of times above iqr/1.349 (std estimator) the median to be considered as threshold for the component

    minCircularity: float
        parameter from cv2.SimpleBlobDetector

    minInertiaRatio: float
        parameter from cv2.SimpleBlobDetector

    minConvexity: float
        parameter from cv2.SimpleBlobDetector

    Returns:
    --------
    masks: np.array

    pos_examples:

    neg_examples:

    """
    params = cv2.SimpleBlobDetector_Params()
    params.minCircularity = minCircularity
    params.minInertiaRatio = minInertiaRatio
    params.minConvexity = minConvexity

    # Change thresholds
    params.blobColor = 255

    params.minThreshold = 0
    params.maxThreshold = 255
    params.thresholdStep = 3

    params.minArea = np.pi * ((neuron_radius * .75)**2)

    params.filterByColor = True
    params.filterByArea = True
    params.filterByCircularity = True
    params.filterByConvexity = True
    params.filterByInertia = True

    detector = cv2.SimpleBlobDetector_create(params)

    masks_ws = []
    pos_examples = []
    neg_examples = []

    for count, comp in enumerate(A.tocsc()[:].T):

        print(count)
        comp_d = np.array(comp.todense())
        gray_image = np.reshape(comp_d, dims, order='F')
        gray_image = (gray_image - np.min(gray_image)) / \
            (np.max(gray_image) - np.min(gray_image)) * 255
        gray_image = gray_image.astype(np.uint8)

        # segment using watershed
        markers = np.zeros_like(gray_image)
        elevation_map = sobel(gray_image)
        thr_1 = np.percentile(gray_image[gray_image > 0], 50)
        iqr = np.diff(np.percentile(gray_image[gray_image > 0], (25, 75)))
        thr_2 = thr_1 + num_std_threshold * iqr / 1.35
        markers[gray_image < thr_1] = 1
        markers[gray_image > thr_2] = 2
        edges = watershed(elevation_map, markers) - 1
        # only keep largest object
        label_objects, _ = ndi.label(edges)
        sizes = np.bincount(label_objects.ravel())

        if len(sizes) > 1:
            idx_largest = np.argmax(sizes[1:])
            edges = (label_objects == (1 + idx_largest))
            edges = ndi.binary_fill_holes(edges)
        else:
            print('empty component')
            edges = np.zeros_like(edges)

        masks_ws.append(edges)
        keypoints = detector.detect((edges * 200.).astype(np.uint8))

        if len(keypoints) > 0:
            pos_examples.append(count)
        else:
            neg_examples.append(count)

    return np.array(masks_ws), np.array(pos_examples), np.array(neg_examples)
示例#51
0
def get_ws():

    energy = np.array(h.File(heatmap_20_path, 'r')['main'])[0]

    #energy = energy[np.newaxis, :, :]

    ##CC
    seg = get_seg(energy, None, 16)

    nlabels, count = np.unique(seg,
                               return_counts=True)  #count return the times

    indices = np.argsort(count)
    nlabels = nlabels[indices]
    count = count[indices]

    least_index = np.where(count >= 1000)[0][0]

    count = count[least_index:]
    nlabels = nlabels[least_index:]

    rl = np.arange(seg.max() + 1).astype(seg.dtype)

    for i in range(seg.max() + 1):
        if i not in nlabels:
            rl[i] = 0

    seg = rl[seg]

    # segcc_path = folder + 'WholeSlice/SegCC/whole_segcc_' + str(z) + '.h5'
    # writeh5(segcc_path,'main',seg)

    ## Watershed
    energy = np.array(h.File(heatmap_20_path,
                             'r')['main'])[0].astype(np.float32)

    threshold = 150

    energy_thres = energy - threshold
    markers_unlabelled = (energy_thres > 0).astype(int)
    markers, ncomponents = label_scipy(markers_unlabelled)
    labels_d, count_d = np.unique(markers, return_counts=True)

    rl = np.arange(markers.max() + 1).astype(markers.dtype)
    pixel_threshold = 100

    for i in range(len(labels_d)):
        if count_d[i] < pixel_threshold:
            rl[labels_d[i]] = 0

    markers = rl[markers]

    mask = (seg > 0).astype(int)  # uses cc

    labels = watershed(-energy, mask=mask, markers=markers)

    segws_path = folder + 'seg_' + '_' + str(threshold) + '.h5'
    writeh5(segws_path, 'main', labels)

    seg_eval = (labels > 0).astype(int)
    gt = np.array(
        h.File('/n/pfister_lab2/Lab/xingyu/Human/Dataset/test_gt60.h5',
               'r')['main'])
    gt_eval = (gt > 0).astype(int)

    print(np.shape(seg_eval))
    print(np.shape(gt_eval))
    tp = np.sum(gt_eval & seg_eval)
    fp = np.sum((~gt_eval) & seg_eval)
    tn = np.sum(gt_eval & (~seg_eval))
    print(tp, fp, tn)

    precision = float(tp) / (tp + fp)
    recall = tp / (tp + tn)
    print(precision, recall)
示例#52
0
def hierarchical_segmentation(grayscale, pickle_me=False):
    '''
    Segments a grayscale image by first applying adaptive histogram
    equalization to enhance contrast followed by an Otsu threshold to
    isolate cell colonies. An adaptive thresholding method is then used to
    isolate clusters of close-packed cells. Estimated regions of interest for
    individual cells are finally generated using the Watershed algorithm, and
    the cell regions are given unique labels and various measurements are
    calculated for the regions from the original grayscale image.

    Inputs:
    -------
    grayscale: A grayscale image loaded into a NumPy array

    pickle_me: Boolean, dumps NumPy arrays of intermediate images to pickle
        files in the current working directory if True

    Outputs:
    --------
    labels: The labels associated with the thresholded regions

    props: The properties of the regions-of-interest measured from the original
        grayscale image
    '''

    # Apply CLAHE
    equalized = equalize_adapthist(grayscale,
                                   ntiles_x=16,
                                   ntiles_y=16,
                                   clip_limit=0.01,
                                   nbins=256)

    # Otsu threshold of CLAHE equalized "grayscale"
    otsu1 = threshold_otsu(equalized)
    print "Otsu threshold: {0}".format(otsu1)

    thresh1 = remove_small_objects(equalized > otsu1)

    colonies = thresh1 * equalized

    thresh2 = threshold_adaptive(colonies, 21)
    # Use morphological opening to help separate clusters and remove noise
    opened = binary_opening(thresh2, selem=disk(3))

    clusters = opened * equalized

    # Generate labels for Watershed using local maxima of the distance
    # transform as markers
    distance = distance_transform_edt(opened)
    local_maxi = peak_local_max(distance,
                                min_distance=6,
                                indices=False,
                                labels=opened)
    markers = ndimage.label(local_maxi)[0]
    # plt.imshow(markers)

    # Apply Watershed
    labels = watershed(-distance, markers, mask=opened)
    #    plt.imshow(label2rgb(labels))

    # Measure labeled region properties in the illumination-corrected image
    # (not the contrast stretched image)
    props = regionprops(labels, intensity_image=grayscale)

    #    fig, axs = plt.subplots(2, 4)
    #    axs[0, 0].imshow(equalized, cmap=plt.cm.gray)
    #    axs[0, 0].set_title('CLAHE Equalized')
    #    axs[0, 1].imshow(thresh1, cmap=plt.cm.gray)
    #    axs[0, 1].set_title('Threshold 1, Otsu')
    #    axs[0, 2].imshow(colonies, cmap=plt.cm.gray)
    #    axs[0, 2].set_title('Colonies')
    #    axs[0, 3].imshow(thresh2, cmap=plt.cm.gray)
    #    axs[0, 3].set_title('Threshold 2, Adaptive')
    #    axs[1, 0].imshow(opened, cmap=plt.cm.gray)
    #    axs[1, 0].set_title('Threshold 2, Opened')
    #    axs[1, 1].imshow(clusters, cmap=plt.cm.gray)
    #    axs[1, 1].set_title('Clusters')
    #    axs[1, 2].imshow(distance, cmap=plt.cm.gray)
    #    axs[1, 2].set_title('Distance Transform')
    #    axs[1, 3].imshow(label2rgb(labels))
    #    axs[1, 3].set_title('Labelled Segmentation')

    if pickle_me:
        equalized.dump('CLAHE_equalized.p')
        thresh1.dump('thresh1_otsu.p')
        colonies.dump('colonies.p')
        thresh2.dump('thresh2_adaptive.p')
        opened.dump('opened_thresh2.p')
        clusters.dump('clusters.p')
        distance.dump('distance_transform.p')
        markers.dump('max_dist_markers.p')

    return (labels, props)
        pixel_threshold = COUNT_THRESH2

        for i in range(len(labels_d)):
            if count_d[i] < pixel_threshold:
                rl[labels_d[i]] = 0

        markers = rl[markers]

        # Mask for watershed from CC output

        mask = (seg > 0).astype(int)

        # Watershed with markers and mask

        labels = watershed(-energy, mask=mask, markers=markers)

        # # show contrast results
        # plt.subplot(1,4,1)
        # plt.imshow(markers_unlabelled[0,:,:])
        # plt.title('original seed')
        # plt.subplot(1,4,2)
        # plt.imshow(labels[0])
        # plt.title('original seg')

        # --------------------------------------------------------------------------------------
        # iterative watershed
        # --------------------------------------------------------------------------------------

        flags = needIteration(labels, VESICLE_AREA)
        erosion_map = np.zeros(labels.shape)
示例#54
0
# Identifiy markers in distance map

localMax = peak_local_max(distance_withred,
                          indices=False,
                          min_distance=minimum_distance_map_distance,
                          labels=thresh)

# perform a connected component analysis on the local peaks,
# using 8-connectivity, then apply the Watershed algorithm
markers_withred = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
markersim = np.array(markers * 1000000, dtype="uint8")

# In[]: Identify each rsegmented region

labels = watershed(-distance_withred, markers_withred, mask=thresh)
print("{} unique segments found".format(len(np.unique(labels)) - 1))

# loop over the unique labels returned by the Watershed algorithm

maskim = np.zeros(np.shape(image), dtype="uint8")
val = 0
radius = 6

r = np.zeros(len(np.unique(labels)) + 1, dtype="uint8")
mean_coloursBRG = np.zeros((len(np.unique(labels)) + 1, 4), dtype="uint8")
colour_threshold = 160  #120 #COLOUR THRESHOLD

for label in np.unique(labels):
    # if the label is zero, we are examining the 'background' so simply ignore it
    val = val + 1
示例#55
0
                                cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))

h, s, v = cv2.split(res2)

# Now we want to separate the two objects in image
# Generate the markers as local maxima of the distance to the background
distance = ndi.distance_transform_edt(v)
local_maxi = peak_local_max(distance,
                            indices=False,
                            footprint=np.ones((3, 3)),
                            labels=v)
markers = ndi.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=v)
fig, axes = plt.subplots(ncols=3,
                         figsize=(9, 3),
                         sharex=True,
                         sharey=True,
                         subplot_kw={'adjustable': 'box-forced'})
ax = axes.ravel()

ax[0].imshow(v, cmap=plt.cm.gray, interpolation='nearest')
ax[0].set_title('Overlapping objects')
ax[1].imshow(-distance, cmap=plt.cm.gray, interpolation='nearest')
ax[1].set_title('Distances')
ax[2].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax[2].set_title('Separated objects')

for a in ax:
示例#56
0
def cell_boundary(tubulin, hoechst, threshold=80, markers=None):
    def build_gabor_filters():
        filters = []
        ksize = 9
        for theta in np.arange(0, np.pi, np.pi / 8):
            kern = cv2.getGaborKernel((ksize, ksize),
                                      4.0,
                                      theta,
                                      6.0,
                                      0.5,
                                      0,
                                      ktype=cv2.CV_32F)
            kern /= kern.sum()
            filters.append(kern)
        return filters

    def process_gabor(img, filters):
        accum = np.zeros_like(img)
        for kern in filters:
            fimg = cv2.filter2D(img, cv2.CV_16UC1, kern)
            np.maximum(accum, fimg, accum)
        return accum

    p2 = np.percentile(tubulin, 2)
    p98 = np.percentile(tubulin, 98)
    tubulin = exposure.rescale_intensity(tubulin, in_range=(p2, p98))
    p2 = np.percentile(hoechst, 2)
    p98 = np.percentile(hoechst, 98)
    hoechst = exposure.rescale_intensity(hoechst, in_range=(p2, p98))

    # img = np.maximum(tubulin, hoechst)
    img = tubulin

    img = morphology.erosion(img, morphology.square(3))
    filters = build_gabor_filters()
    gabor = process_gabor(img, filters)

    gabor = cv2.convertScaleAbs(gabor, alpha=(255.0 / 65535.0))
    ret, bin1 = cv2.threshold(gabor, threshold, 255, cv2.THRESH_BINARY)

    # gaussian blur on gabor filter result
    ksize = 31
    blur = cv2.GaussianBlur(bin1, (ksize, ksize), 0)
    ret, cells_mask = cv2.threshold(blur, threshold, 255, cv2.THRESH_OTSU)
    # ret, bin2 = cv2.threshold(blur, 70, 255, cv2.THRESH_BINARY)

    if markers is None:
        # get markers for watershed from hoescht channel
        hoechst_8 = cv2.convertScaleAbs(hoechst, alpha=(255.0 / 65535.0))
        blur_nuc = cv2.GaussianBlur(hoechst_8, (ksize, ksize), 0)
        ret, bin_nuc = cv2.threshold(blur_nuc, 0, 255, cv2.THRESH_OTSU)
        markers = ndi.label(bin_nuc)[0]

    labels = morphology.watershed(-gabor, markers, mask=cells_mask)

    boundaries_list = list()
    # loop over the labels
    for (i, l) in enumerate([l for l in np.unique(labels) if l > 0]):
        # find contour of mask
        cell_boundary = np.zeros(shape=labels.shape, dtype=np.uint8)
        cell_boundary[labels == l] = 255
        cnts = cv2.findContours(cell_boundary.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)[-2]
        contour = cnts[0]

        boundary = np.array([[x, y] for x, y in [i[0] for i in contour]],
                            dtype=np.float32)
        if len(boundary) >= 3:
            boundaries_list.append({'id': l, 'boundary': Polygon(boundary)})

    return boundaries_list, cells_mask > 255
示例#57
0
# Compute compacity of granular material
compacity = mask[100:500, 200:600].mean()

# Separate the different coins
# ------------------------------------------------

erosion = morphology.binary_erosion(mask, morphology.disk(9))
erosion = morphology.binary_erosion(erosion, morphology.disk(5))

labs = morphology.label(erosion, background=0)
labs += 1

from scipy import ndimage
elevation_map = -ndimage.distance_transform_edt(mask)

regions = morphology.watershed(elevation_map, markers=labs, mask=mask)

plt.figure(figsize=(12, 3))
plt.subplot(131)
plt.imshow(labs, cmap='spectral')
plt.axis('off')
plt.subplot(132)
plt.imshow(elevation_map, cmap='spectral')
plt.axis('off')
plt.subplot(133)
plt.imshow(regions, cmap='spectral')
plt.axis('off')
plt.tight_layout()

# remove borders and relabel regions
l0, l1 = img.shape
        C_binary_cut = np.zeros([DIM_LAT, DIM_LON])
        #    r = 500 #the bounding box side = 2r
        #    C_binary_cut[I_idx[0]-r:I_idx[0]+r,I_idx[1]-r:I_idx[1]+r] = C_binary[I_idx[0]-r:I_idx[0]+r,I_idx[1]-r:I_idx[1]+r]
        C_binary8 = C_binary.astype(np.uint8)

        kernel = np.ones((3, 3), np.uint8)
        opening = cv2.morphologyEx(C_binary8,
                                   cv2.MORPH_OPEN,
                                   kernel,
                                   iterations=2)
        dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 0)
        ret, sure_fg = cv2.threshold(dist_transform,
                                     0.04 * dist_transform.max(), 255, 0)

        dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 0)
        labels_ws = watershed(-dist_transform, C_flag_core, mask=C_binary8)

        C_binary8_second = np.where(labels_ws > 0, C_binary8, 0)

        C_flag_overflow = np.where(labels_ws == 0, 0, labels_ws)
        C_flag_overflow = C_flag_overflow.astype(np.uint8)
        #%de')

        #% Compare the mask obtained from previous mask and the current overflow mask
        C_flag_compared = C_flag_overflow - C_flag_core
        blobs_labels_compared = measure.label(
            C_flag_compared, neighbors=4,
            background=0)  # identify separate blobs

        volume_core = np.count_nonzero(C_flag_core)
        C_flag = C_flag_core[:]
示例#59
0
def nps_finder_2d(stack_in,
                  name_in,
                  thresh_type,
                  smooth_type,
                  smooth_size=1,
                  gauss_size=0,
                  cont_size=0,
                  sep_method='watershed',
                  mass_cutoff=200,
                  area_cutoff=0,
                  max_radius=5,
                  min_radius=1,
                  test=True,
                  plot=True,
                  save=True):
    # np.copy() used because peak_local_max does weird things to the image histogram if we use the actual image
    print('mass_cutoff is', mass_cutoff)
    z_size, y_size, x_size = np.shape(stack_in)

    # Generate flatted image from stack
    max_int_proj = stack_in.max(axis=0)
    # Image to store labels
    labeled_image = np.zeros_like(max_int_proj)

    # Smooth data
    smoothed = preprocessor.smooth(np.copy(max_int_proj), smooth_type,
                                   smooth_size)
    smoothed = preprocessor.bandpass(np.copy(smoothed), gauss_size)
    smoothed = preprocessor.contrast(np.copy(smoothed), cont_size)
    # Calculate threshold
    thresh = preprocessor.threshold(np.copy(smoothed), thresh_type)
    # thresh = threshold_local(smoothed, block_size = 31, offset=40)
    print('thresh is', thresh)
    im_max = smoothed.max()
    print('im_max is', im_max)
    binary = smoothed > thresh

    # Two approaches
    # 1. Identify local maxima in real-space image - separate by watershedding
    if sep_method == 'watershed':
        print('watershedding')
        local_maxi = peak_local_max(np.copy(smoothed),
                                    min_distance=min_radius,
                                    threshold_abs=thresh,
                                    indices=False,
                                    labels=np.copy(smoothed))
        labeled_image = ndimage.label(local_maxi, structure=square(3))[0]
        markers = ndimage.label(local_maxi)[0]
        labeled_image = watershed(-labeled_image, markers, mask=binary)

    # Calculate properties of particles
    # Properties - area, coords, label, radius
    properties = []
    columns = ('x', 'y', 'area', 'radius', 'intensity')
    indices = []
    # f_prop = regionprops(labeled_image, intensity_image = max_int_proj)
    f_prop = regionprops(labeled_image, intensity_image=max_int_proj)

    for d in f_prop:
        radius = (d.area / np.pi)**0.5
        properties.append([
            d.weighted_centroid[1], d.weighted_centroid[0], d.area, radius,
            d.mean_intensity * d.area
        ])
        indices.append(d.label)
    # if not len(indices):
    #     all_props = pd.DataFrame([], index=[])
    indices = pd.Index(indices, name='label')
    properties = pd.DataFrame(properties, index=indices, columns=columns)
    properties = properties[properties['intensity'] < 10000]
    properties = properties[properties['intensity'] > mass_cutoff]
    properties = properties[properties['area'] > area_cutoff]
    properties['np_smooth_type'] = smooth_type
    properties['np_smooth_size'] = smooth_size
    properties['np_thresh_method'] = thresh_type
    properties['separation_method'] = sep_method
    particles_averaged = properties

    # ################################
    #     # Create data array in which clustered particles are averaged
    #     # Store computed values
    #     values = []
    #     if len(properties) == 0:
    #         values.append(['NaN', 'NaN', 'NaN', 'NaN', 'NaN'])
    #     elif len(properties) > 0:
    #         if len(properties) == 1:
    #             properties['particle'] = 1
    #         elif len(properties) > 1:
    #             # Clustering to eliminate maxima that are too close together
    #             positions = properties[['x', 'y']].values
    #             # Distance matrix is n-particles x n-particles in size - reckon it gives the interparticle separation
    #             # This gives the upper triangle of the distance matrix
    #             dist_mat = dist.pdist(positions)
    #             link_mat = hier.linkage(dist_mat)
    #             # fcluster assigns each of the particles in positions a cluster to which it belongs
    #             cluster_idx = hier.fcluster(link_mat, max_radius, criterion='distance')
    #             properties['particle'] = cluster_idx

    #         particles = np.unique(properties['particle'].values)

    #         for i in particles:
    #             # Calculate weighted average position of particles
    #             current = properties[properties['particle'] == i]
    #             # Normalisation constant of weighted average
    #             norm = np.sum(current['intensity'])
    #             x_av = np.mean(current['x'])
    #             y_av = np.mean(current['y'])
    #             a_total = np.sum(current['area'])
    #             # Geometric cut-off to particle size
    #             if a_total > 2 and a_total < 400:
    #                 values.append([x_av, y_av, a_total, norm, i])

    # # Data Frame containing the weighted averages of the locations of the particles
    # columns = ('x', 'y', 'a_total', 'intensity', 'particle')
    # particles_averaged = pd.DataFrame(values, columns = columns)
    # print 'Found', len(particles_averaged), 'particles'
    if test == True:
        vis.testplot_parts(max_int_proj, name_in, particles_averaged['x'],
                           particles_averaged['y'], smoothed, binary,
                           labeled_image)

    if plot == True:
        # Plot data
        plt.clf()
        fig = plt.figure(figsize=(12, 12))
        ax = fig.add_subplot(111)
        ax.imshow(max_int_proj, cmap='gray', vmin=0, vmax=255)
        ax.scatter(particles_averaged['x'],
                   particles_averaged['y'],
                   facecolors='none',
                   edgecolors='red',
                   s=100)

    if save == True:
        outname = name_in + '_particles.tif'
        plt.savefig(outname, bbox_inches='tight')
        print(outname, 'saved')
        plt.close()

    return particles_averaged
示例#60
0
def water(image, image_rgb, image_labels, index, type_trainortest):
    # 滤波     过滤噪声
    #中值滤波器(median): 返回图像局部区域内的中值,用此中值取代该区域内所有像素值。
    denoised = filters.rank.median(image, morphology.disk(5))
    # 梯度计算
    #返回图像的局部梯度值(最大值 - 最小值),用此梯度值代替区域内所有像素值。
    markers_t = filters.rank.gradient(denoised,
                                      morphology.disk(5))  ##半径为5的圆形滤波器
    ax_img = plt.subplot(2, 2, 1)
    ax_img.set_title("gradient")
    ax_img.imshow(markers_t, 'gray')
    print("markers_t")
    print(markers_t)
    # 显示直方图
    ax_hist = plt.subplot(2, 2, 2)
    ax_hist.set_title('hist')
    ax_hist.hist(markers_t.ravel(), bins=256)  #ravel将多维数组降为一维
    ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0))
    ax_hist.set_xlabel('Pixel intensity')

    # 梯度计算并选取梯度小的区域作为初始区域    将梯度(中值)值低于20的作为开始标记点
    markers = filters.rank.gradient(denoised, morphology.disk(3)) < 10
    print("markers111")
    print(markers)

    # 根据连通性对局部区域标记
    markers = ndi.label(markers)[0]
    print("matkers222")
    print(markers)

    # 梯度计算
    gradient = filters.rank.gradient(denoised, morphology.disk(3))

    # 根据标记的局部区域进行分水岭分割
    labels = morphology.watershed(gradient, markers, mask=image)
    print("labels:")
    #print(labels)
    print(labels.shape[0])
    print(labels.shape[1])
    # print(labels.shape, labels.max())

    # 区域分割效果图转换为边缘提取效果图
    oriimg = image_rgb.copy()
    bwimg = image.copy()
    for i in range(1, labels.shape[0] - 1):
        for j in range(1, labels.shape[1] - 1):
            rect = labels[i - 1:i + 2, j - 1:j + 2]
            #print(np.mean(rect))
            if labels[i, j] != np.mean(rect):  #算数平均值。i,j点的像素值与走位区域的平均值不相等,则是边缘
                oriimg[i, j] = [255, 0, 0]
                bwimg[i, j] = 255
            else:
                bwimg[i, j] = 0
    #用于灰度扩张
    bwimg_wide = ndi.grey_dilation(bwimg, size=(5, 5))
    # bwimg_wide = ndi.grey_dilation(bwimg, footprint=ndi.generate_binary_structure(2,1))
    # bwimg_wide = ndi.grey_dilation(bwimg_wide, footprint=ndi.generate_binary_structure(2, 1))

    # 输出
    cv2.imwrite(
        'data/' + type_trainortest + '/water_gradient10_kuo3/' + str(index) +
        '.png', oriimg)
    cv2.imwrite(
        'data/' + type_trainortest + '/wateredge_gradient10_kuo3/' +
        str(index) + '.png', bwimg)
    cv2.imwrite(
        'data/' + type_trainortest + '/wateredgewide_gradient10_kuo3/' +
        str(index) + '.png', bwimg_wide)

    ax_oriimg = plt.subplot(2, 2, 3)
    ax_oriimg.set_title('original')
    ax_oriimg.imshow(image_rgb)
    ax_segimg = plt.subplot(2, 2, 4)
    ax_segimg.set_title('edge')
    ax_segimg.imshow(oriimg)
    #plt.show()

    fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
    axes = axes.ravel()
    ax0, ax1, ax2, ax3 = axes

    ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
    ax0.set_title("Original")
    ax1.imshow(image_labels, cmap=plt.cm.gray, interpolation='nearest')
    ax1.set_title("Labels")
    ax2.imshow(gradient, cmap=plt.cm.gray, interpolation='nearest')
    ax2.set_title("Gradient")
    ax3.imshow(bwimg_wide, cmap=plt.cm.gray, interpolation='nearest')
    ax3.set_title("WideEdge")

    for ax in axes:
        ax.axis('off')

    fig.tight_layout()