示例#1
0
def resize(image, output_shape, order=1, mode='constant', cval=0.):
    """Resize image to match a certain size.

    Performs interpolation to up-size or down-size images. For down-sampling
    N-dimensional images by applying the arithmetic sum or mean, see
    `skimage.measure.local_sum` and `skimage.transform.downscale_local_mean`,
    respectively.

    Parameters
    ----------
    image : ndarray
        Input image.
    output_shape : tuple or ndarray
        Size of the generated output image `(rows, cols[, dim])`. If `dim` is
        not provided, the number of channels is preserved. In case the number
        of input channels does not equal the number of output channels a
        3-dimensional interpolation is applied.

    Returns
    -------
    resized : ndarray
        Resized version of the input.

    Other parameters
    ----------------
    order : int, optional
        The order of the spline interpolation, default is 1. The order has to
        be in the range 0-5. See `skimage.transform.warp` for detail.
    mode : string, optional
        Points outside the boundaries of the input are filled according
        to the given mode ('constant', 'nearest', 'reflect' or 'wrap').
    cval : float, optional
        Used in conjunction with mode 'constant', the value outside
        the image boundaries.

    Examples
    --------
    >>> from skimage import data
    >>> from skimage.transform import resize
    >>> image = data.camera()
    >>> resize(image, (100, 100)).shape
    (100, 100)

    """

    rows, cols = output_shape[0], output_shape[1]
    orig_rows, orig_cols = image.shape[0], image.shape[1]

    row_scale = float(orig_rows) / rows
    col_scale = float(orig_cols) / cols

    # 3-dimensional interpolation
    if len(output_shape) == 3 and (image.ndim == 2
                                   or output_shape[2] != image.shape[2]):
        dim = output_shape[2]
        orig_dim = 1 if image.ndim == 2 else image.shape[2]
        dim_scale = float(orig_dim) / dim

        map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
        map_rows = row_scale * (map_rows + 0.5) - 0.5
        map_cols = col_scale * (map_cols + 0.5) - 0.5
        map_dims = dim_scale * (map_dims + 0.5) - 0.5

        coord_map = np.array([map_rows, map_cols, map_dims])

        out = ndimage.map_coordinates(image,
                                      coord_map,
                                      order=order,
                                      mode=mode,
                                      cval=cval)

    else:  # 2-dimensional interpolation

        # 3 control points necessary to estimate exact AffineTransform
        src_corners = np.array([[1, 1], [1, rows], [cols, rows]]) - 1
        dst_corners = np.zeros(src_corners.shape, dtype=np.double)
        # take into account that 0th pixel is at position (0.5, 0.5)
        dst_corners[:, 0] = col_scale * (src_corners[:, 0] + 0.5) - 0.5
        dst_corners[:, 1] = row_scale * (src_corners[:, 1] + 0.5) - 0.5

        tform = AffineTransform()
        tform.estimate(src_corners, dst_corners)

        out = warp(image,
                   tform,
                   output_shape=output_shape,
                   order=order,
                   mode=mode,
                   cval=cval)

    return out
        pad = args.pad
        width = in_quad[:, 0].max() - in_quad[:, 0].min()
        height = in_quad[:, 1].max() - in_quad[:, 1].min()
        out_quad = array([(0, 0), (width, 0), (width, height),
                          (0, height)]) + pad

        # import ipdb; ipdb.set_trace()

        metadata = dict(folder=folder, stem=stem)
        metadata['polygon'] = f.polygon.points.tolist()
        highlight = np.zeros((data.height, data.width), dtype=np.uint8)
        f.draw(highlight, fill=255, outline=128)

        if use_quad:
            P = AffineTransform()
            P.estimate(out_quad, in_quad)
            output = warp(data,
                          P,
                          output_shape=(height + 2 * pad, width + 2 * pad))
            sub_highlight = warp(highlight,
                                 P,
                                 output_shape=(height + 2 * pad,
                                               width + 2 * pad))
            projection_matrix = P.params
            metadata['use_quad'] = True
            metadata['projection'] = projection_matrix.tolist()
            metadata['subimage'] = None
        else:
            # import ipdb; ipdb.set_trace()
            data_array = img_as_float(data_array)
示例#3
0
def resize(image, output_shape, order=1, mode='constant', cval=0.):
    """Resize image to match a certain size.

    Performs interpolation to up-size or down-size images. For down-sampling
    N-dimensional images by applying the arithmetic sum or mean, see
    `skimage.measure.local_sum` and `skimage.transform.downscale_local_mean`,
    respectively.

    Parameters
    ----------
    image : ndarray
        Input image.
    output_shape : tuple or ndarray
        Size of the generated output image `(rows, cols[, dim])`. If `dim` is
        not provided, the number of channels is preserved. In case the number
        of input channels does not equal the number of output channels a
        3-dimensional interpolation is applied.

    Returns
    -------
    resized : ndarray
        Resized version of the input.

    Other parameters
    ----------------
    order : int, optional
        The order of the spline interpolation, default is 1. The order has to
        be in the range 0-5. See `skimage.transform.warp` for detail.
    mode : string, optional
        Points outside the boundaries of the input are filled according
        to the given mode ('constant', 'nearest', 'reflect' or 'wrap').
    cval : float, optional
        Used in conjunction with mode 'constant', the value outside
        the image boundaries.

    Examples
    --------
    >>> from skimage import data
    >>> from skimage.transform import resize
    >>> image = data.camera()
    >>> resize(image, (100, 100)).shape
    (100, 100)

    """

    rows, cols = output_shape[0], output_shape[1]
    orig_rows, orig_cols = image.shape[0], image.shape[1]

    row_scale = float(orig_rows) / rows
    col_scale = float(orig_cols) / cols

    # 3-dimensional interpolation
    if len(output_shape) == 3 and (image.ndim == 2
                                   or output_shape[2] != image.shape[2]):
        dim = output_shape[2]
        orig_dim = 1 if image.ndim == 2 else image.shape[2]
        dim_scale = float(orig_dim) / dim

        map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
        map_rows = row_scale * (map_rows + 0.5) - 0.5
        map_cols = col_scale * (map_cols + 0.5) - 0.5
        map_dims = dim_scale * (map_dims + 0.5) - 0.5

        coord_map = np.array([map_rows, map_cols, map_dims])

        out = ndimage.map_coordinates(image, coord_map, order=order, mode=mode,
                                      cval=cval)

    else:  # 2-dimensional interpolation

        # 3 control points necessary to estimate exact AffineTransform
        src_corners = np.array([[1, 1], [1, rows], [cols, rows]]) - 1
        dst_corners = np.zeros(src_corners.shape, dtype=np.double)
        # take into account that 0th pixel is at position (0.5, 0.5)
        dst_corners[:, 0] = col_scale * (src_corners[:, 0] + 0.5) - 0.5
        dst_corners[:, 1] = row_scale * (src_corners[:, 1] + 0.5) - 0.5

        tform = AffineTransform()
        tform.estimate(src_corners, dst_corners)

        out = warp(image, tform, output_shape=output_shape, order=order,
                   mode=mode, cval=cval)

    return out
示例#4
0
def resize_downsample(image, output_shape, order=1, mode=None, cval=0, clip=True,
           preserve_range=False, anti_aliasing=True, anti_aliasing_sigma=None):
    """
    Resize image to match a certain size.
    Performs interpolation to up-size or down-size images. Note that anti-
    aliasing should be enabled when down-sizing images to avoid aliasing
    artifacts. For down-sampling N-dimensional images with an integer factor
    also see `skimage.transform.downscale_local_mean`.
    Parameters
    
    This code was copied from: 
    https://github.com/scikit-image/scikit-image/blob/master/skimage/transform/_warps.py#L34
    Commit Hush: 94b561e77aa551fa91c52d9140af220885e5181e
    Because anti-aliasing parameter in resize function was only introduced in skimage 0.15 which is still a dev version.
    Once 0.15 will become an oficial version and will be updated here, this function can be deleted from the code and just imported.
    I did not use downscale_local_mean because it only allows for downscaling parameter of int (no float) - output size might be very different than user requested.
    ----------
    image : ndarray
        Input image.
    output_shape : tuple or ndarray
        Size of the generated output image `(rows, cols[, ...][, dim])`. If
        `dim` is not provided, the number of channels is preserved. In case the
        number of input channels does not equal the number of output channels a
        n-dimensional interpolation is applied.
    Returns
    -------
    resized : ndarray
        Resized version of the input.
    Other parameters
    ----------------
    order : int, optional
        The order of the spline interpolation, default is 1. The order has to
        be in the range 0-5. See `skimage.transform.warp` for detail.
    mode : {'constant', 'edge', 'symmetric', 'reflect', 'wrap'}, optional
        Points outside the boundaries of the input are filled according
        to the given mode.  Modes match the behaviour of `numpy.pad`.  The
        default mode is 'constant'.
    cval : float, optional
        Used in conjunction with mode 'constant', the value outside
        the image boundaries.
    clip : bool, optional
        Whether to clip the output to the range of values of the input image.
        This is enabled by default, since higher order interpolation may
        produce values outside the given input range.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input
        image is converted according to the conventions of `img_as_float`.
    anti_aliasing : bool, optional
        Whether to apply a Gaussian filter to smooth the image prior to
        down-scaling. It is crucial to filter when down-sampling the image to
        avoid aliasing artifacts.
    anti_aliasing_sigma : {float, tuple of floats}, optional
        Standard deviation for Gaussian filtering to avoid aliasing artifacts.
        By default, this value is chosen as (1 - s) / 2 where s is the
        down-scaling factor.
    Notes
    -----
    Modes 'reflect' and 'symmetric' are similar, but differ in whether the edge
    pixels are duplicated during the reflection.  As an example, if an array
    has values [0, 1, 2] and was padded to the right by four values using
    symmetric, the result would be [0, 1, 2, 2, 1, 0, 0], while for reflect it
    would be [0, 1, 2, 1, 0, 1, 2].
    Examples
    --------
    >>> from skimage import data
    >>> from skimage.transform import resize
    >>> image = data.camera()
    >>> resize(image, (100, 100), mode='reflect').shape
    (100, 100)
    """

    if mode is None:
        mode = 'constant'

    output_shape = tuple(output_shape)
    output_ndim = len(output_shape)
    input_shape = image.shape
    if output_ndim > image.ndim:
        # append dimensions to input_shape
        input_shape = input_shape + (1, ) * (output_ndim - image.ndim)
        image = np.reshape(image, input_shape)
    elif output_ndim == image.ndim - 1:
        # multichannel case: append shape of last axis
        output_shape = output_shape + (image.shape[-1], )
    elif output_ndim < image.ndim - 1:
        raise ValueError("len(output_shape) cannot be smaller than the image "
                         "dimensions")

    factors = (np.asarray(input_shape, dtype=float) /
               np.asarray(output_shape, dtype=float))

    if anti_aliasing_sigma is None:
        anti_aliasing_sigma = np.maximum(0, (factors - 1) / 2)
    else:
        anti_aliasing_sigma =             np.atleast_1d(anti_aliasing_sigma) * np.ones_like(factors)
        if np.any(anti_aliasing_sigma < 0):
            raise ValueError("Anti-aliasing standard deviation must be "
                             "greater than or equal to zero")

    image = ndi.gaussian_filter(image, anti_aliasing_sigma,
                                cval=cval, mode=mode)

    # 2-dimensional interpolation
    if len(output_shape) == 2 or (len(output_shape) == 3 and
                                  output_shape[2] == input_shape[2]):
        rows = output_shape[0]
        cols = output_shape[1]
        input_rows = input_shape[0]
        input_cols = input_shape[1]
        if rows == 1 and cols == 1:
            tform = AffineTransform(translation=(input_cols / 2.0 - 0.5,
                                                 input_rows / 2.0 - 0.5))
        else:
            # 3 control points necessary to estimate exact AffineTransform
            src_corners = np.array([[1, 1], [1, rows], [cols, rows]]) - 1
            dst_corners = np.zeros(src_corners.shape, dtype=np.double)
            # take into account that 0th pixel is at position (0.5, 0.5)
            dst_corners[:, 0] = factors[1] * (src_corners[:, 0] + 0.5) - 0.5
            dst_corners[:, 1] = factors[0] * (src_corners[:, 1] + 0.5) - 0.5

            tform = AffineTransform()
            tform.estimate(src_corners, dst_corners)

        out = warp(image, tform, output_shape=output_shape, order=order,
                   mode=mode, cval=cval, clip=clip,
                   preserve_range=preserve_range)

    else:  # n-dimensional interpolation
        coord_arrays = [factors[i] * (np.arange(d) + 0.5) - 0.5
                        for i, d in enumerate(output_shape)]

        coord_map = np.array(np.meshgrid(*coord_arrays,
                                         sparse=False,
                                         indexing='ij'))

        image = convert_to_float(image, preserve_range)

        ndi_mode = _to_ndimage_mode(mode)
        out = ndi.map_coordinates(image, coord_map, order=order,
                                  mode=ndi_mode, cval=cval)

        _clip_warp_output(image, out, order, mode, cval, clip)

    return out