示例#1
0
def test_euclidean_estimation():
    # exact solution
    tform = estimate_transform('euclidean', SRC[:2, :], SRC[:2, :] + 10)
    assert_almost_equal(tform(SRC[:2, :]), SRC[:2, :] + 10)
    assert_almost_equal(tform.params[0, 0], tform.params[1, 1])
    assert_almost_equal(tform.params[0, 1], -tform.params[1, 0])

    # over-determined
    tform2 = estimate_transform('euclidean', SRC, DST)
    assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
    assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1])
    assert_almost_equal(tform2.params[0, 1], -tform2.params[1, 0])

    # via estimate method
    tform3 = EuclideanTransform()
    tform3.estimate(SRC, DST)
    assert_almost_equal(tform3.params, tform2.params)
示例#2
0
def test_euclidean_estimation():
    # exact solution
    tform = estimate_transform('euclidean', SRC[:2, :], SRC[:2, :] + 10)
    assert_almost_equal(tform(SRC[:2, :]), SRC[:2, :] + 10)
    assert_almost_equal(tform.params[0, 0], tform.params[1, 1])
    assert_almost_equal(tform.params[0, 1], - tform.params[1, 0])

    # over-determined
    tform2 = estimate_transform('euclidean', SRC, DST)
    assert_almost_equal(tform2.inverse(tform2(SRC)), SRC)
    assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1])
    assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0])

    # via estimate method
    tform3 = EuclideanTransform()
    tform3.estimate(SRC, DST)
    assert_almost_equal(tform3.params, tform2.params)
示例#3
0
文件: calib.py 项目: nbhr/pycalib
def absolute_orientation(p, q, no_scaling=False):
    """
    Returns R, t, s satisfying q = s * R * p + t
    
    p and q must be 3xN matrices.
    """

    if no_scaling:
        st = EuclideanTransform()
    else:
        st = SimilarityTransform()

    st.estimate(p.T, q.T)
    R = st.params[:3, :3]
    t = st.params[:3, 3]
    s = np.linalg.norm(R) / np.sqrt(3)
    R = R / s
    return R, t, s
示例#4
0
 def transform_euclidean(left_kps, right_kps, left_ds, right_ds):
     """Determine projective transform which fits best to map right kps to left kps."""
     bf = cv2.BFMatcher()
     log.info('Start matching Features.')
     raw_matches = bf.knnMatch(left_ds, right_ds, k=2)
     log.debug('Matches found: #raw_matches = {}'.format(len(raw_matches)))
     left_pts, right_pts, good_matches = helpers.get_points_n_matches(
         left_kps, right_kps, raw_matches)
     log.debug('# Filtered Features = {}'.format(len(good_matches)))
     if len(left_pts) > 3:
         log.info('Start finding homography.')
         left_pts = left_pts.reshape((len(left_pts), 2))
         right_pts = right_pts.reshape((len(right_pts), 2))
         model = EuclideanTransform()
         model.estimate(right_pts, left_pts)
         model_robust, inliers = ransac((right_pts, left_pts),
                                        EuclideanTransform,
                                        min_samples=50,
                                        residual_threshold=10,
                                        max_trials=3000)
         h**o = model_robust.params
         mask_good = None
         return h**o, mask_good, good_matches
     return None
示例#5
0
def test_3d_euclidean_estimation():
    src_points = np.random.rand(1000, 3)

    # Random transformation for testing
    angles = np.random.random((3, )) * 2 * np.pi - np.pi
    rotation_matrix = _euler_rotation_matrix(angles)
    translation_vector = np.random.random((3, ))
    dst_points = []
    for pt in src_points:
        pt_r = pt.reshape(3, 1)
        dst = np.matmul(rotation_matrix, pt_r) + \
            translation_vector.reshape(3, 1)
        dst = dst.reshape(3)
        dst_points.append(dst)

    dst_points = np.array(dst_points)
    # estimating the transformation
    tform = EuclideanTransform(dimensionality=3)
    assert tform.estimate(src_points, dst_points)
    estimated_rotation = tform.rotation
    estimated_translation = tform.translation
    assert_almost_equal(estimated_rotation, rotation_matrix)
    assert_almost_equal(estimated_translation, translation_vector)