def main(unused_argv): if not FLAGS.input_file_pattern: raise ValueError("--input_file_pattern is required.") if not FLAGS.train_dir: raise ValueError("--train_dir is required.") model_config = configuration.model_config( input_file_pattern=FLAGS.input_file_pattern) training_config = configuration.training_config() tf.logging.info("Building training graph.") g = tf.Graph() with g.as_default(): model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train") model.build() learning_rate = _setup_learning_rate(training_config, model.global_step) optimizer = tf.train.AdamOptimizer(learning_rate) train_tensor = tf.contrib.slim.learning.create_train_op( total_loss=model.total_loss, optimizer=optimizer, global_step=model.global_step, clip_gradient_norm=training_config.clip_gradient_norm) saver = tf.train.Saver() tf.contrib.slim.learning.train( train_op=train_tensor, logdir=FLAGS.train_dir, graph=g, global_step=model.global_step, number_of_steps=training_config.number_of_steps, save_summaries_secs=training_config.save_summaries_secs, saver=saver, save_interval_secs=training_config.save_model_secs)
def main(unused_argv): if not FLAGS.train_dir: raise ValueError("--train_dir is required.") #read_vocab(FLAGS.vocab) model_config = configuration.model_config() training_config = configuration.training_config() ################ define discriminator model ################ disc_model = Discriminator(sequence_length=MAXLEN, num_classes=1, vocab_size=model_config.vocab_size, embedding_size=model_config.word_embedding_dim, filter_sizes=[1, 2, 3, 4, 5, 7, 10], num_filters=[100, 100, 100, 100, 100, 100, 100]) ################# define training model ################# model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train") model.build() learning_rate = _setup_learning_rate(training_config, model.global_step) optimizer = tf.train.AdamOptimizer(learning_rate) variables_to_train = [v for v in tf.trainable_variables()] variables_to_restore = [ v for v in tf.all_variables() if ('discriminator' not in v.name) ] print(len(variables_to_train)) train_tensor = tf.contrib.slim.learning.create_train_op( total_loss=model.total_loss, optimizer=optimizer, clip_gradient_norm=training_config.clip_gradient_norm, variables_to_train=variables_to_train) ######################define target lstm #################### #target_lstm = skip_thoughts_model.TargetLSTM(config=model_config) #synthesized = True target_lstm = None synthesized = False ################ define testing model ################ #model_config_test = configuration.model_config() #model_test = skip_thoughts_model.SkipThoughtsModel(model_config_test, mode="eval") #model_test.build(is_testing=True) ################ define savers ################ reloader = tf.train.Saver(var_list=variables_to_restore) reloader_all = tf.train.Saver() saver = tf.train.Saver(max_to_keep=1000) gpu_config = tf.ConfigProto(gpu_options=tf.GPUOptions( per_process_gpu_memory_fraction=1.0, allow_growth=True), allow_soft_placement=True, log_device_placement=False) init_op = tf.global_variables_initializer() sess = tf.Session(config=gpu_config) run_metadata = tf.RunMetadata() sess.run(init_op, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE, output_partition_graphs=True), run_metadata=run_metadata) with open("/tmp/meta.txt", 'w') as f: f.write(str(run_metadata)) if FLAGS.reload_model: reloader.restore(sess, FLAGS.reload_model) if FLAGS.reload_model_all: reloader_all.restore(sess, FLAGS.reload_model_all) ################ load training data ############## train_data_loader = DataLoader(128) train_data_loader.load(FLAGS.train_corpus_en, FLAGS.train_corpus_fr) total_loss_sup_list = [] total_loss_rl_list = [] bleu_list = [] fake_list, real_list, neglikely_list = [], [], [] outf = open(os.path.join(FLAGS.train_dir, 'log.txt'), 'a') logf = open(os.path.join(FLAGS.train_dir, 'debug_log.txt'), 'w') ############### run training and testing ############# for i in xrange(1000000): model_prefix = "" if i < FLAGS.pretrain_G_steps: model_prefix = "preG_" np_global_step, total_loss_sup, total_loss_rl, avg_bleu, avg_fake, avg_real, avg_neglikely = my_train_step( sess, train_tensor, model, train_data_loader, logf, train_sup=True, train_rl=False, disc_model=disc_model, adjustD=False, adjustG=True, given_num=MAXLEN) elif i < FLAGS.pretrain_G_steps + FLAGS.pretrain_D_steps: model_prefix = "preD_" np_global_step, total_loss_sup, total_loss_rl, avg_bleu, avg_fake, avg_real, avg_neglikely = my_train_step( sess, train_tensor, model, train_data_loader, logf, train_sup=False, train_rl=True, disc_model=disc_model, adjustD=True, adjustG=False, given_num=0) elif FLAGS.mixer_period and FLAGS.mixer_step and FLAGS.mixer_period > 0: gn = default_given_num - ( i - FLAGS.pretrain_G_steps - FLAGS.pretrain_D_steps ) // FLAGS.mixer_period * FLAGS.mixer_step if gn < 0: gn = 0 model_prefix = "mixGN" + str(gn) + "_" if i % 10 == 0: adjustD = FLAGS.adjustD else: adjustD = False if i % 200 == 0: print("gn=", gn) np_global_step, total_loss_sup, total_loss_rl, avg_bleu, avg_fake, avg_real, avg_neglikely = my_train_step( \ sess, train_tensor, model, train_data_loader, logf, train_sup=False, train_rl=True, \ disc_model=disc_model, adjustD=adjustD, adjustG=FLAGS.adjustG, given_num=gn) else: model_prefix = "" np_global_step, total_loss_sup, total_loss_rl, avg_bleu, avg_fake, avg_real, avg_neglikely = my_train_step( sess, train_tensor, model, train_data_loader, logf, train_sup=False, train_rl=True, disc_model=disc_model, adjustD=FLAGS.adjustD, adjustG=FLAGS.adjustG) total_loss_sup_list.append(total_loss_sup) total_loss_rl_list.append(total_loss_rl) fake_list.append(avg_fake) real_list.append(avg_real) bleu_list.append(avg_bleu) neglikely_list.append(avg_neglikely) if np_global_step % 2000 == 0: saver.save( sess, os.path.join(FLAGS.train_dir, model_prefix + "model-" + str(np_global_step))) if np_global_step % 20 == 0: # my_test_step(sess, model_test, FLAGS.test_result+'-'+str(np_global_step)) print(np_global_step, np.mean(total_loss_sup_list), np.mean(total_loss_rl_list)) print(np.mean(bleu_list), np.mean(fake_list), np.mean(real_list)) print(np.mean(neglikely_list)) outf.write( str(np_global_step) + " " + str(np.mean(total_loss_sup_list)) + " " + str(np.mean(total_loss_rl_list)) + " " + str(np.mean(bleu_list)) + " " + str(np.mean(fake_list)) + " " + str(np.mean(real_list)) + " " + str(np.mean(neglikely_list)) + "\n") total_loss_sup_list, total_loss_rl_list, bleu_list, fake_list, real_list, neglikely_list = [],[],[],[],[],[]
def main(unused_argv): if not FLAGS.input_file_pattern: raise ValueError("--input_file_pattern is required.") if not FLAGS.train_dir: raise ValueError("--train_dir is required.") model_config = configuration.model_config( input_file_pattern=FLAGS.input_file_pattern, bidirectional_encoder=True) training_config = configuration.training_config() tf.logging.info("Building training graph.") g = tf.Graph() with g.as_default(): model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train") model.build() encoder_variables = [v for v in tf.global_variables() if v.name.startswith("encoder") and "Adam" not in v.name] embedding_variables = [v for v in tf.global_variables() if v.name.startswith("word_embedding") and "Adam" not in v.name] print([v.name for v in (encoder_variables+embedding_variables)]) learning_rate = _setup_learning_rate(training_config, model.global_step) optimizer = tf.train.AdamOptimizer(learning_rate) encoder_mult = 0.1 embedding_mult = 0.01 multiply = dict([(v, encoder_mult) for v in encoder_variables] + [(v, embedding_mult) for v in embedding_variables]) train_tensor = tf.contrib.slim.learning.create_train_op( total_loss=model.total_loss, optimizer=optimizer, gradient_multipliers=multiply, global_step=model.global_step, clip_gradient_norm=training_config.clip_gradient_norm) saver = tf.train.Saver() model_path = tf.train.latest_checkpoint(FLAGS.train_dir) pretrain_saver = tf.train.Saver(encoder_variables+embedding_variables) print(model_path) if model_path: def restore_fn(sess): tf.logging.info( "Restoring SA&T variables from checkpoint file") saver.restore(sess, model_path) else: def restore_fn(sess): tf.logging.info( "Restoring SA&T variables from pretrained model") #saver.restore(sess, "/home/ubuntu/code/A_skip_thoughts_2/skip_thoughts/model/backup/run1/model.ckpt-2111") pretrain_saver.restore(sess, "/home/ubuntu/code/pretrained/bi/model.ckpt-500008") tf.contrib.slim.learning.train( train_op=train_tensor, logdir=FLAGS.train_dir, graph=g, global_step=model.global_step, number_of_steps=training_config.number_of_steps, save_summaries_secs=training_config.save_summaries_secs, saver=saver, save_interval_secs=training_config.save_model_secs, init_fn = restore_fn)
def main(unused_argv): if not FLAGS.input_file_pattern: raise ValueError("--input_file_pattern is required.") if not FLAGS.train_dir: raise ValueError("--train_dir is required.") model_config = configuration.model_config( input_file_pattern=FLAGS.input_file_pattern) training_config = configuration.training_config() tf.logging.info("Building training graph.") g = tf.Graph() with g.as_default(): grads_tower = [] for dev_ind in range(4): with tf.device('/gpu:%d' % dev_ind): model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train") model.build() learning_rate = _setup_learning_rate(training_config, model.global_step) optimizer = tf.train.AdamOptimizer(learning_rate) total_loss = model.total_loss # Update ops use GraphKeys.UPDATE_OPS collection if update_ops is None. update_ops = set(ops.get_collection(ops.GraphKeys.UPDATE_OPS)) # Make sure update_ops are computed before total_loss. if update_ops: with ops.control_dependencies(update_ops): barrier = control_flow_ops.no_op(name='update_barrier') total_loss = control_flow_ops.with_dependencies([barrier], total_loss) variables_to_train = tf_variables.trainable_variables() assert variables_to_train gate_gradients = tf_optimizer.Optimizer.GATE_OP # Create the gradients. Note that apply_gradients adds the gradient # computation to the current graph. grads = optimizer.compute_gradients( total_loss, variables_to_train, gate_gradients=gate_gradients, aggregation_method=None, colocate_gradients_with_ops=False) grads = tf.contrib.slim.learning.clip_gradient_norms( grads, training_config.clip_gradient_norm) grads_tower.append(grads) avg_grads = average_gradients.average_gradients(grads_tower) # Create gradient updates. grad_updates = optimizer.apply_gradients(avg_grads, global_step=model.global_step) with ops.name_scope('train_op'): # Make sure total_loss is valid. total_loss = array_ops.check_numerics(total_loss, 'LossTensor is inf or nan') # Ensure the train_tensor computes grad_updates. train_op = control_flow_ops.with_dependencies([grad_updates], total_loss) # Add the operation used for training to the 'train_op' collection train_ops = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP) if train_op not in train_ops: train_ops.append(train_op) saver = tf.train.Saver() tf.contrib.slim.learning.train( train_op=train_op, logdir=FLAGS.train_dir, graph=g, global_step=model.global_step, number_of_steps=training_config.number_of_steps, save_summaries_secs=training_config.save_summaries_secs, saver=saver, save_interval_secs=training_config.save_model_secs)
def main(unused_argv): if not FLAGS.input_file_pattern: raise ValueError("--input_file_pattern is required.") if not FLAGS.run_dir: raise ValueError("--run_dir is required.") if not FLAGS.decoder: raise ValueError("--decoder is required.") if not FLAGS.train_dir: train_dir = os.path.join(FLAGS.run_dir, 'run_{t}'.format(t=time.time())) tf.logging.info( "No specified --train_dir. Creating {d}.".format(d=train_dir)) os.makedirs(train_dir) write_config(train_dir=train_dir, flags=FLAGS) else: tf.logging.info("Specified --train_dir {d}; Not autocreating.".format( d=FLAGS.train_dir)) train_dir = FLAGS.train_dir decoder_config = experiments.get_decoder_config(flags=FLAGS) model_config = configuration.model_config( input_file_pattern=FLAGS.input_file_pattern, vocab_size=FLAGS.vocab_size, batch_size=FLAGS.batch_size, word_embedding_dim=FLAGS.word_dim, pretrained_word_emb_file=FLAGS.pretrained_word_emb_file, word_emb_trainable=FLAGS.word_emb_trainable, encoder_dim=FLAGS.encoder_dim, skipgram_encoder=FLAGS.skipgram_encoder, sequence_decoder_pre=decoder_config.sequence_decoder_pre, sequence_decoder_cur=decoder_config.sequence_decoder_cur, sequence_decoder_post=decoder_config.sequence_decoder_post, skipgram_decoder_pre=decoder_config.skipgram_decoder_pre, skipgram_decoder_cur=decoder_config.skipgram_decoder_cur, skipgram_decoder_post=decoder_config.skipgram_decoder_post, share_weights_logits=FLAGS.share_weights_logits, normalise_decoder_losses=FLAGS.normalise_decoder_losses, skipgram_prefactor=FLAGS.skipgram_prefactor, sequence_prefactor=FLAGS.sequence_prefactor) training_config = configuration.training_config( number_of_steps=FLAGS.number_of_steps) tf.logging.info("Building training graph.") g = tf.Graph() with g.as_default(): tf.set_random_seed(1234) model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train") model.build() learning_rate = _setup_learning_rate(training_config, model.global_step) optimizer = tf.train.AdamOptimizer(learning_rate) train_tensor = tf.contrib.slim.learning.create_train_op( total_loss=model.total_loss, optimizer=optimizer, global_step=model.global_step, clip_gradient_norm=training_config.clip_gradient_norm, summarize_gradients=True, check_numerics=True) saver = tf.train.Saver() gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=FLAGS.gpu_fraction) tf.contrib.slim.learning.train( train_op=train_tensor, logdir=train_dir, graph=g, global_step=model.global_step, number_of_steps=training_config.number_of_steps, session_config=tf.ConfigProto(gpu_options=gpu_options), save_summaries_secs=training_config.save_summaries_secs, saver=saver, save_interval_secs=training_config.save_model_secs)