示例#1
0
def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle,
                               random_state):
    """Helper function for _fit_coordinate_descent

    Update W to minimize the objective function, iterating once over all
    coordinates. By symmetry, to update H, one can call
    _update_coordinate_descent(X.T, Ht, W, ...)

    """
    n_components = Ht.shape[1]

    HHt = fast_dot(Ht.T, Ht)
    XHt = safe_sparse_dot(X, Ht)

    # L2 regularization corresponds to increase of the diagonal of HHt
    if l2_reg != 0.:
        # adds l2_reg only on the diagonal
        HHt.flat[::n_components + 1] += l2_reg
    # L1 regularization corresponds to decrease of each element of XHt
    if l1_reg != 0.:
        XHt -= l1_reg

    if shuffle:
        permutation = random_state.permutation(n_components)
    else:
        permutation = np.arange(n_components)
    # The following seems to be required on 64-bit Windows w/ Python 3.5.
    permutation = np.asarray(permutation, dtype=np.intp)
    return _update_cdnmf_fast(W, HHt, XHt, permutation)
示例#2
0
文件: nmf.py 项目: dkoes/notebooks
def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle,
                               random_state):
    """Helper function for _fit_coordinate_descent

    Update W to minimize the objective function, iterating once over all
    coordinates. By symmetry, to update H, one can call
    _update_coordinate_descent(X.T, Ht, W, ...)

    """
    n_components = Ht.shape[1]

    HHt = fast_dot(Ht.T, Ht)
    XHt = safe_sparse_dot(X, Ht)

    # L2 regularization corresponds to increase of the diagonal of HHt
    if l2_reg != 0.:
        # adds l2_reg only on the diagonal
        HHt.flat[::n_components + 1] += l2_reg
    # L1 regularization corresponds to decrease of each element of XHt
    if l1_reg != 0.:
        XHt -= l1_reg

    if shuffle:
        permutation = random_state.permutation(n_components)
    else:
        permutation = np.arange(n_components)
    # The following seems to be required on 64-bit Windows w/ Python 3.5.
    permutation = np.asarray(permutation, dtype=np.intp)
    return _update_cdnmf_fast(W, HHt, XHt, permutation)
示例#3
0
    def nmf_iteration_update(self, X, W, H, l1_reg, l2_reg, shuffle):
        n_components = H.shape[1]

        HHt = np.dot(H.T, H)
        XHt = np.dot(X, H)

        # L2 regularization corresponds to increase of the diagonal of HHt
        if l2_reg != 0.:
            # adds l2_reg only on the diagonal
            HHt.flat[::n_components + 1] += l2_reg
        # L1 regularization corresponds to decrease of each element of XHt
        if l1_reg != 0.:
            XHt -= l1_reg

        if shuffle:
            permutation = np.random.permutation(n_components)
        else:
            permutation = np.arange(n_components)
        # The following seems to be required on 64-bit Windows w/ Python 3.5.
        permutation = np.asarray(permutation, dtype=np.intp)
        return _update_cdnmf_fast(W, HHt, XHt, permutation)
示例#4
0
文件: nmf.py 项目: cjfcsjt/SILBO
def compute_nmf(A, rank, init='nndsvd', shuffle=False,
                l2_reg_H=0.0, l2_reg_W=0.0, l1_reg_H=0.0, l1_reg_W=0.0,
                tol=1e-5, maxiter=200, random_state=None):
    """Nonnegative Matrix Factorization.

    Hierarchical alternating least squares algorithm
    for computing the approximate low-rank nonnegative matrix factorization of
    a rectangular `(m, n)` matrix `A`. Given the target rank `rank << min{m,n}`,
    the input matrix `A` is factored as `A = W H`. The nonnegative factor
    matrices `W` and `H` are of dimension `(m, rank)` and `(rank, n)`, respectively.


    Parameters
    ----------
    A : array_like, shape `(m, n)`.
        Real nonnegative input matrix.

    rank : integer, `rank << min{m,n}`.
        Target rank.

    init :  'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
        Method used to initialize the procedure. Default: 'nndsvd'.
        Valid options:
        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)
        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)
        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)
        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

    shuffle : boolean, default: False
        If true, randomly shuffle the update order of the variables.

    l2_reg_H : float, (default ``l2_reg_H = 0.1``).
        Amount of ridge shrinkage to apply to `H` to improve conditionin.

    l2_reg_W : float, (default ``l2_reg_W = 0.1``).
        Amount of ridge shrinkage to apply to `W` to improve conditionin.

    l1_reg_H : float, (default ``l1_reg_H = 0.0``).
        Sparsity controlling parameter on `H`.
        Higher values lead to sparser components.

    l1_reg_W : float, (default ``l1_reg_W = 0.0``).
        Sparsity controlling parameter on `W`.
        Higher values lead to sparser components.

    tol : float, default: `tol=1e-4`.
        Tolerance of the stopping condition.

    maxiter : integer, default: `maxiter=100`.
        Number of iterations.

    random_state : integer, RandomState instance or None, optional (default ``None``)
        If integer, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used by np.random.

    verbose : boolean, default: `verbose=False`.
        The verbosity level.


    Returns
    -------
    W:  array_like, `(m, rank)`.
        Solution to the non-negative least squares problem.

    H : array_like, `(rank, n)`.
        Solution to the non-negative least squares problem.


    Notes
    -----
    This HALS update algorithm written in cython is adapted from the
    scikit-learn implementation for the deterministic NMF. We also have
    adapted the initilization scheme.

    See: https://github.com/scikit-learn/scikit-learn


    References
    ----------
    [1] Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.

    [2] C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
    nonnegative matrix factorization - Pattern Recognition, 2008
    http://tinyurl.com/nndsvd


    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> import ristretto as ro
    >>> W, H = ro.nmf(X, rank=2)
    """
    random_state = check_random_state(random_state)

    # converts A to array, raise ValueError if A has inf or nan
    A = np.asarray_chkfinite(A)
    m, n = A.shape

    if np.any(A < 0):
        raise ValueError("Input matrix with nonnegative elements is required.")

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Initialization methods for factor matrices W and H
    # 'normal': nonnegative standard normal random init
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    W, H = _initialize_nmf(A, rank, init=init, eps=1e-6, random_state=random_state)
    Ht = np.array(H.T, order='C')

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Iterate the HALS algorithm until convergence or maxiter is reached
    # i)   Update factor matrix H and normalize columns
    # ii)  Update low-dimensional factor matrix W
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    violation = 0.0
    for niter in range(maxiter):

        # Update factor matrix H with regularization
        WtW = W.T.dot(W)
        WtW.flat[::rank + 1] += l2_reg_H  # adds l2_reg only on the diagonal
        AtW = A.T.dot(W) - l1_reg_H

        # compute violation update
        permutation = random_state.permutation(rank) if shuffle else np.arange(rank)
        violation = _update_cdnmf_fast(Ht, WtW, AtW, permutation)

        # Update factor matrix W with regularization
        HHt = Ht.T.dot(Ht)
        HHt.flat[::rank + 1] += l2_reg_W # adds l2_reg only on the diagonal

        AHt = A.dot(Ht) - l1_reg_W

        # compute violation update
        permutation = random_state.permutation(rank) if shuffle else np.arange(rank)
        violation += _update_cdnmf_fast(W, HHt, AHt, permutation)

        # Compute stopping condition.
        if niter == 0:
            if violation == 0: break
            violation_init = violation

        if violation / violation_init <= tol:
            break

    # Return factor matrices
    return W, Ht.T
示例#5
0
文件: nmf.py 项目: cjfcsjt/SILBO
def compute_rnmf(A, rank, oversample=20, n_subspace=2, init='nndsvd', shuffle=False,
                 l2_reg_H=0.0, l2_reg_W=0.0, l1_reg_H=0.0, l1_reg_W=0.0,
                 tol=1e-5, maxiter=200, random_state=None):
    """
    Randomized Nonnegative Matrix Factorization.

    Randomized hierarchical alternating least squares algorithm
    for computing the approximate low-rank nonnegative matrix factorization of
    a rectangular `(m, n)` matrix `A`. Given the target rank `rank << min{m,n}`,
    the input matrix `A` is factored as `A = W H`. The nonnegative factor
    matrices `W` and `H` are of dimension `(m, rank)` and `(rank, n)`, respectively.

    The quality of the approximation can be controlled via the oversampling
    parameter `oversample` and the parameter `n_subspace` which specifies the number of
    subspace iterations.


    Parameters
    ----------
    A : array_like, shape `(m, n)`.
        Real nonnegative input matrix.

    rank : integer, `rank << min{m,n}`.
        Target rank, i.e., number of components to extract from the data

    oversample : integer, optional (default: 10)
        Controls the oversampling of column space. Increasing this parameter
        may improve numerical accuracy.

    n_subspace : integer, default: 2.
        Parameter to control number of subspace iterations. Increasing this
        parameter may improve numerical accuracy.

    init :  'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
        Method used to initialize the procedure. Default: 'nndsvd'.
        Valid options:
        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)
        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)
        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)
        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

    shuffle : boolean, default: False
        If true, randomly shuffle the update order of the variables.

    l2_reg_H : float, (default ``l2_reg_H = 0.1``).
        Amount of ridge shrinkage to apply to `H` to improve conditioning.

    l2_reg_W : float, (default ``l2_reg_W = 0.1``).
        Amount of ridge shrinkage to apply to `W` to improve conditioning.

    l1_reg_H : float, (default ``l1_reg_H = 0.0``).
        Sparsity controlling parameter on `H`.
        Higher values lead to sparser components.

    l1_reg_W : float, (default ``l1_reg_W = 0.0``).
        Sparsity controlling parameter on `W`.
        Higher values lead to sparser components.

    tol : float, default: `tol=1e-5`.
        Tolerance of the stopping condition.

    maxiter : integer, default: `maxiter=200`.
        Number of iterations.

    random_state : integer, RandomState instance or None, optional (default ``None``)
        If integer, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used by np.random.

    verbose : boolean, default: `verbose=False`.
        The verbosity level.


    Returns
    -------
    W:  array_like, `(m, rank)`.
        Solution to the non-negative least squares problem.

    H : array_like, `(rank, n)`.
        Solution to the non-negative least squares problem.


    Notes
    -----
    This HALS update algorithm written in cython is adapted from the
    scikit-learn implementation for the deterministic NMF.  We also have
    adapted the initilization scheme.

    See: https://github.com/scikit-learn/scikit-learn


    References
    ----------
    [1] Erichson, N. Benjamin, Ariana Mendible, Sophie Wihlborn, and J. Nathan Kutz.
    "Randomized Nonnegative Matrix Factorization."
    Pattern Recognition Letters (2018).

    [2] Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.

    [3] C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
    nonnegative matrix factorization - Pattern Recognition, 2008
    http://tinyurl.com/nndsvd

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> import ristretto as ro
    >>> W, H = ro.rnmf(X, rank=2, oversample=0)
    """
    random_state = check_random_state(random_state)

    # converts A to array, raise ValueError if A has inf or nan
    A = np.asarray_chkfinite(A)
    m, n = A.shape

    flipped = False
    if n > m:
        A = A.T
        m, n = A.shape
        flipped = True

    if A.dtype not in _VALID_DTYPES:
        raise ValueError('A.dtype must be one of %s, not %s'
                         % (' '.join(_VALID_DTYPES), A.dtype))

    if np.any(A < 0):
        raise ValueError("Input matrix with nonnegative elements is required.")

    Q, B = compute_rqb(A, rank, oversample=oversample,
                       n_subspace=n_subspace, random_state=random_state)

    #  Initialization methods for factor matrices W and H
    W, H = _initialize_nmf(A, rank, init=init, eps=1e-6, random_state=random_state)
    Ht = np.array(H.T, order='C')
    W_tilde = Q.T.dot(W)
    del A

    #  Iterate the HALS algorithm until convergence or maxiter is reached
    violation = 0.0
    for niter in range(maxiter):

        # Update factor matrix H
        WtW = W.T.dot(W)
        WtW.flat[::rank + 1] += l2_reg_H # adds l2_reg only on the diagonal
        BtW = B.T.dot(W_tilde) - l1_reg_H

        # compute violation update
        permutation = random_state.permutation(rank) if shuffle else np.arange(rank)
        violation = _update_cdnmf_fast(Ht, WtW, BtW, permutation)

        # Update factor matrix W
        HHt = Ht.T.dot(Ht)
        HHt.flat[::rank + 1] += l2_reg_W # adds l2_reg only on the diagonal

        # Rotate AHt back to high-dimensional space
        BHt = Q.dot(B.dot(Ht)) - l1_reg_W

        # compute violation update
        permutation = random_state.permutation(rank) if shuffle else np.arange(rank)
        violation += _update_cdnmf_fast(W, HHt, BHt, permutation)

        # Project W to low-dimensional space
        W_tilde = Q.T.dot(W)

        # Compute stopping condition.
        if niter == 0:
            if violation == 0: break
            violation_init = violation

        if violation / violation_init <= tol:
            break

    # Return factor matrices
    if flipped:
        return(Ht, W.T)
    return(W, Ht.T)