from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import confusion_matrix, accuracy_score data = datasets.load_iris("path/to/the/dataset") data.features = data[[ "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" ]] data.targets = data.Class X_train, X_test, y_train, y_test = train_test_split(data.features, data.targets, test_size=0.25, random_state=42) model = AdaBoostClassifier(n_estimators=100, learning_rate=1, random_state=133) model.fitted = model.fit(X_train, y_train) model.predictions = model.fitted.predict(X_test) print(confusion_matrix(y_test, model.predictions)) print(accuracy_score(y_test, model.predictions))
import pandas as pd from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.cross_validation import train_test_split data = pd.read_csv("C:\\Users\\User\\Desktop\\iris_data.csv") #print(data) data.features = data[["SepalLength","SepalWidth","PetalLength","PetalWidth"]] data.targets = data.Class feature_train, feature_test, target_train, target_test = train_test_split(data.features, data.targets, test_size=.2) model = AdaBoostClassifier(n_estimators=100,learning_rate=1,random_state=123) model.fitted = model.fit(feature_train, target_train) model.predictions = model.fitted.predict(feature_test) print(confusion_matrix(target_test, model.predictions)) print(accuracy_score(target_test, model.predictions))
import pandas as pd from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split data = pd.read_csv( "D:\Study Materials\Study\My Python Workspace\Intro to ML DL with Python\Boosting\iris_data.csv" ) data.features = data[[ "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" ]] data.targets = data.Class feature_train, feature_test, target_train, target_test = train_test_split( data.features, data.targets, test_size=0.2) model = AdaBoostClassifier(n_estimators=100, learning_rate=1, random_state=123) model.fitted = model.fit(feature_train, target_train) model.predictions = model.fitted.predict(feature_test) print("\nThe confusion Matrix: \n", confusion_matrix(target_test, model.predictions)) print("\nAccuracy: ", accuracy_score(target_test, model.predictions))