forest 4-->tr: 0.866979504134,val: 0.572140934661,cost 108 forest 5-->tr: 0.865444728731,val: 0.565962549302,cost 105 forest 6-->tr: 0.847071811478,val: 0.550088494652,cost 105 forest 7-->tr: 0.867795690777,val: 0.55928161695,cost 110 forest 8-->tr: 0.849556952293,val: 0.54308323331,cost 111 forest 9-->tr: 0.852024718779,val: 0.558287108709,cost 105 ''' #%% ''' validating on training dataset ''' forest_2nd = [] for forest_idx in range(0, 10, 1): model = read_variable('final/2nd_level_models/' + str(forest_idx)) forest_2nd.append(model) val_Y_sum = np.zeros(val_Y.shape[0]) for model in forest_2nd: val_Y_pred = model.predict(val_votes) print('mcc:', matthews_corrcoef(val_Y, val_Y_pred)) val_Y_sum += val_Y_pred #%% ''' mcc: 0.572089121234 mcc: 0.584374265357 mcc: 0.574731321479 mcc: 0.561043527534 mcc: 0.56279640286 mcc: 0.568082925197
from sklearn.cross_validation import train_test_split i = 0 from imblearn.over_sampling.smote import SMOTE sm = SMOTE() pd_tf_np = ss.fit_transform(pd_tf_np) out = np.ones(shape=(250, 9)) rfc = [] for i in range(9): rfc.append(RandomForestClassifier(n_estimators=400)) res = [] for i in range(9): #x_train,x_test,y_train,y_test = train_test_split(pd_tf_np,y_vals.iloc[:,i].values) x_train, x_test = pd_tf_np[250:, :], pd_tf_np[:250, :] y_train, y_test = y_vals.iloc[:, i].values[250:], y_vals.iloc[:, i].values[:250] #ss = StandardScaler()