示例#1
0
class SGDRegressorImpl():

    def __init__(self, loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False):
        self._hyperparams = {
            'loss': loss,
            'penalty': penalty,
            'alpha': alpha,
            'l1_ratio': l1_ratio,
            'fit_intercept': fit_intercept,
            'max_iter': max_iter,
            'tol': tol,
            'shuffle': shuffle,
            'verbose': verbose,
            'epsilon': epsilon,
            'random_state': random_state,
            'learning_rate': learning_rate,
            'eta0': eta0,
            'power_t': power_t,
            'early_stopping': early_stopping,
            'validation_fraction': validation_fraction,
            'n_iter_no_change': n_iter_no_change,
            'warm_start': warm_start,
            'average': average}
        self._wrapped_model = SKLModel(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
示例#2
0
class SGD(AutoSklearnRegressionAlgorithm):
    def __init__(
        self,
        loss,
        penalty,
        alpha,
        fit_intercept,
        n_iter,
        learning_rate,
        l1_ratio=0.15,
        epsilon=0.1,
        eta0=0.01,
        power_t=0.5,
        average=False,
        random_state=None,
    ):
        self.loss = loss
        self.penalty = penalty
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.n_iter = n_iter
        self.learning_rate = learning_rate
        self.l1_ratio = l1_ratio
        self.epsilon = epsilon
        self.eta0 = eta0
        self.power_t = power_t
        self.random_state = random_state
        self.average = average

        self.estimator = None
        self.scaler = None

    def fit(self, X, y):
        while not self.configuration_fully_fitted():
            self.iterative_fit(X, y, n_iter=1)

        return self

    def iterative_fit(self, X, y, n_iter=1, refit=False):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor
        import sklearn.preprocessing

        if refit:
            self.estimator = None
            self.scaler = None

        if self.estimator is None:
            self._iterations = 0

            self.alpha = float(self.alpha)
            self.fit_intercept = self.fit_intercept == "True"
            self.n_iter = int(self.n_iter)
            self.l1_ratio = float(self.l1_ratio) if self.l1_ratio is not None else 0.15
            self.epsilon = float(self.epsilon) if self.epsilon is not None else 0.1
            self.eta0 = float(self.eta0)
            self.power_t = float(self.power_t) if self.power_t is not None else 0.25
            self.average = self.average == "True"
            self.estimator = SGDRegressor(
                loss=self.loss,
                penalty=self.penalty,
                alpha=self.alpha,
                fit_intercept=self.fit_intercept,
                n_iter=self.n_iter,
                learning_rate=self.learning_rate,
                l1_ratio=self.l1_ratio,
                epsilon=self.epsilon,
                eta0=self.eta0,
                power_t=self.power_t,
                shuffle=True,
                average=self.average,
                random_state=self.random_state,
            )

            self.scaler = sklearn.preprocessing.StandardScaler(copy=True)
            self.scaler.fit(y)

        Y_scaled = self.scaler.transform(y)

        self.estimator.n_iter = n_iter
        self._iterations += n_iter
        print(n_iter)
        self.estimator.partial_fit(X, Y_scaled)
        return self

    def configuration_fully_fitted(self):
        if self.estimator is None:
            return False
        return not self._iterations < self.n_iter

    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        Y_pred = self.estimator.predict(X)
        return self.scaler.inverse_transform(Y_pred)

    @staticmethod
    def get_properties(dataset_properties=None):
        return {
            "shortname": "SGD Regressor",
            "name": "Stochastic Gradient Descent Regressor",
            "handles_missing_values": False,
            "handles_nominal_values": False,
            "handles_numerical_features": True,
            "prefers_data_scaled": True,
            "prefers_data_normalized": True,
            "handles_regression": True,
            "handles_classification": False,
            "handles_multiclass": False,
            "handles_multilabel": False,
            "is_deterministic": True,
            "handles_sparse": True,
            "input": (DENSE, SPARSE, UNSIGNED_DATA),
            "output": (PREDICTIONS,),
            # TODO find out what is best used here!
            "preferred_dtype": None,
        }

    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = cs.add_hyperparameter(
            CategoricalHyperparameter(
                "loss",
                ["squared_loss", "huber", "epsilon_insensitive", "squared_epsilon_insensitive"],
                default="squared_loss",
            )
        )
        penalty = cs.add_hyperparameter(CategoricalHyperparameter("penalty", ["l1", "l2", "elasticnet"], default="l2"))
        alpha = cs.add_hyperparameter(UniformFloatHyperparameter("alpha", 10e-7, 1e-1, log=True, default=0.01))
        l1_ratio = cs.add_hyperparameter(UniformFloatHyperparameter("l1_ratio", 1e-9, 1.0, log=True, default=0.15))
        fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter("fit_intercept", "True"))
        n_iter = cs.add_hyperparameter(UniformIntegerHyperparameter("n_iter", 5, 1000, log=True, default=20))
        epsilon = cs.add_hyperparameter(UniformFloatHyperparameter("epsilon", 1e-5, 1e-1, default=1e-4, log=True))
        learning_rate = cs.add_hyperparameter(
            CategoricalHyperparameter("learning_rate", ["optimal", "invscaling", "constant"], default="optimal")
        )
        eta0 = cs.add_hyperparameter(UniformFloatHyperparameter("eta0", 10 ** -7, 0.1, default=0.01))
        power_t = cs.add_hyperparameter(UniformFloatHyperparameter("power_t", 1e-5, 1, default=0.5))
        average = cs.add_hyperparameter(CategoricalHyperparameter("average", ["False", "True"], default="False"))

        # TODO add passive/aggressive here, although not properly documented?
        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_condition = InCondition(epsilon, loss, ["huber", "epsilon_insensitive", "squared_epsilon_insensitive"])
        # eta0 seems to be always active according to the source code; when
        # learning_rate is set to optimial, eta0 is the starting value:
        # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx
        # eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling")
        # eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant")
        # eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant)
        power_t_condition = EqualsCondition(power_t, learning_rate, "invscaling")

        cs.add_condition(elasticnet)
        cs.add_condition(epsilon_condition)
        cs.add_condition(power_t_condition)

        return cs
示例#3
0
class SGD(AutoSklearnRegressionAlgorithm):
    def __init__(self, loss, penalty, alpha, fit_intercept, n_iter,
                 learning_rate, l1_ratio=0.15, epsilon=0.1,
                 eta0=0.01, power_t=0.5, average=False, random_state=None):
        self.loss = loss
        self.penalty = penalty
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.n_iter = n_iter
        self.learning_rate = learning_rate
        self.l1_ratio = l1_ratio
        self.epsilon = epsilon
        self.eta0 = eta0
        self.power_t = power_t
        self.random_state = random_state
        self.average = average

        self.estimator = None
        self.scaler = None

    def fit(self, X, y):
        while not self.configuration_fully_fitted():
            self.iterative_fit(X, y, n_iter=1)

        return self

    def iterative_fit(self, X, y, n_iter=1, refit=False):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor
        import sklearn.preprocessing

        if refit:
            self.estimator = None
            self.scaler = None

        if self.estimator is None:
            self.alpha = float(self.alpha)
            self.fit_intercept = self.fit_intercept == 'True'
            self.n_iter = int(self.n_iter)
            self.l1_ratio = float(
                self.l1_ratio) if self.l1_ratio is not None else 0.15
            self.epsilon = float(
                self.epsilon) if self.epsilon is not None else 0.1
            self.eta0 = float(self.eta0)
            self.power_t = float(
                self.power_t) if self.power_t is not None else 0.25
            self.average = self.average == 'True'
            self.estimator = SGDRegressor(loss=self.loss,
                                          penalty=self.penalty,
                                          alpha=self.alpha,
                                          fit_intercept=self.fit_intercept,
                                          n_iter=self.n_iter,
                                          learning_rate=self.learning_rate,
                                          l1_ratio=self.l1_ratio,
                                          epsilon=self.epsilon,
                                          eta0=self.eta0,
                                          power_t=self.power_t,
                                          shuffle=True,
                                          average=self.average,
                                          random_state=self.random_state)

            self.scaler = sklearn.preprocessing.StandardScaler(copy=True)
            self.scaler.fit(y)

        Y_scaled = self.scaler.transform(y)

        self.estimator.n_iter += n_iter
        self.estimator.fit(X, Y_scaled)
        return self

    def configuration_fully_fitted(self):
        if self.estimator is None:
            return False
        return not self.estimator.n_iter < self.n_iter

    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        Y_pred = self.estimator.predict(X)
        return self.scaler.inverse_transform(Y_pred)

    @staticmethod
    def get_properties(dataset_properties=None):
        return {'shortname': 'SGD Regressor',
                'name': 'Stochastic Gradient Descent Regressor',
                'handles_missing_values': False,
                'handles_nominal_values': False,
                'handles_numerical_features': True,
                'prefers_data_scaled': True,
                'prefers_data_normalized': True,
                'handles_regression': True,
                'handles_classification': False,
                'handles_multiclass': False,
                'handles_multilabel': False,
                'is_deterministic': True,
                'handles_sparse': True,
                'input': (DENSE, SPARSE, UNSIGNED_DATA),
                'output': (PREDICTIONS,),
                # TODO find out what is best used here!
                'preferred_dtype': None}

    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = cs.add_hyperparameter(CategoricalHyperparameter("loss",
            ["squared_loss", "huber", "epsilon_insensitive", "squared_epsilon_insensitive"],
            default="squared_loss"))
        penalty = cs.add_hyperparameter(CategoricalHyperparameter(
            "penalty", ["l1", "l2", "elasticnet"], default="l2"))
        alpha = cs.add_hyperparameter(UniformFloatHyperparameter(
            "alpha", 10e-7, 1e-1, log=True, default=0.01))
        l1_ratio = cs.add_hyperparameter(UniformFloatHyperparameter(
            "l1_ratio", 1e-9, 1., log=True, default=0.15))
        fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter(
            "fit_intercept", "True"))
        n_iter = cs.add_hyperparameter(UniformIntegerHyperparameter(
            "n_iter", 5, 1000, log=True, default=20))
        epsilon = cs.add_hyperparameter(UniformFloatHyperparameter(
            "epsilon", 1e-5, 1e-1, default=1e-4, log=True))
        learning_rate = cs.add_hyperparameter(CategoricalHyperparameter(
            "learning_rate", ["optimal", "invscaling", "constant"],
            default="optimal"))
        eta0 = cs.add_hyperparameter(UniformFloatHyperparameter(
            "eta0", 10 ** -7, 0.1, default=0.01))
        power_t = cs.add_hyperparameter(UniformFloatHyperparameter(
            "power_t", 1e-5, 1, default=0.5))
        average = cs.add_hyperparameter(CategoricalHyperparameter(
            "average", ["False", "True"], default="False"))

        # TODO add passive/aggressive here, although not properly documented?
        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_condition = InCondition(epsilon, loss,
            ["huber", "epsilon_insensitive", "squared_epsilon_insensitive"])
        # eta0 seems to be always active according to the source code; when
        # learning_rate is set to optimial, eta0 is the starting value:
        # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx
        # eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling")
        #eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant")
        #eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant)
        power_t_condition = EqualsCondition(power_t, learning_rate,
                                            "invscaling")

        cs.add_condition(elasticnet)
        cs.add_condition(epsilon_condition)
        cs.add_condition(power_t_condition)

        return cs
示例#4
0
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]
print("test data sparsity: %f" % sparsity_ratio(X_test))

###############################################################################
clf = SGDRegressor(penalty='l1', alpha=.2, max_iter=2000, tol=None)
clf.fit(X_train, y_train)
print("model sparsity: %f" % sparsity_ratio(clf.coef_))


def benchmark_dense_predict():
    for _ in range(300):
        clf.predict(X_test)


def benchmark_sparse_predict():
    X_test_sparse = csr_matrix(X_test)
    for _ in range(300):
        clf.predict(X_test_sparse)


def score(y_test, y_pred, case):
    r2 = r2_score(y_test, y_pred)
    print("r^2 on test data (%s) : %f" % (case, r2))


score(y_test, clf.predict(X_test), 'dense model')
benchmark_dense_predict()
clf.sparsify()
score(y_test, clf.predict(X_test), 'sparse model')
benchmark_sparse_predict()
示例#5
0
class SgdLibraryLinearRegression:
    def __init__(self, data):
        self.df = pd.read_csv(data)
        self.regressor = SGDRegressor(max_iter=40,
                                      tol=1e-5,
                                      learning_rate='constant',
                                      eta0=0.06)

    def preprocess(self):
        # Removing Null values
        self.df.dropna()

        # Removing Duplicates
        self.df.drop_duplicates()

        # Checking the type of input data
        self.df.dtypes

        # Since horsepower is of object type we want to determine the nature of the attribute
        self.df['horsepower'].unique()

        # We are able to see ? in between numerical values so we are disregarding those instances
        self.df = self.df[self.df.horsepower != '?']

        # We are then casting the object to float for further processing
        self.df['horsepower'] = self.df['horsepower'].astype('float')

        # We are removing the car name attribute since that does not correlate with the mpg of the car
        self.df.drop(['car name'], axis=1, inplace=True)

        # Attributes are starting from column 1
        self.X = self.df.iloc[:, 1:].values
        self.Y = self.df.iloc[:, 0].values

        # Scaling the input attributes
        self.X = StandardScaler().fit_transform(self.X)

        # Splitting the data into training and test data set of the proportion 70:30
        self.X_train, self.X_test, self.Y_train, self.Y_test = train_test_split(
            self.X, self.Y, test_size=0.3, random_state=1)

    def train(self, epoch_count=40, learning_rate=0.06):
        self.regressor = SGDRegressor(max_iter=epoch_count,
                                      tol=1e-5,
                                      learning_rate='constant',
                                      eta0=learning_rate)
        # Running the training by calling the library method
        self.regressor.fit(self.X_train, self.Y_train)

    def predictTrain(self):
        # Predicting the values based on the test data
        self.Y_pred = self.regressor.predict(self.X_train)

        # Getting the accuracy from the library method
        self.accuracy_score = self.regressor.score(self.X_train, self.Y_train)
        # print("accuracy score ", accuracy_score)

        # Getting the mean squared error by comparing the predicted value with the actual test value
        self.calculated_mse = mean_squared_error(self.Y_train, self.Y_pred)
        # print("mean square error ",calculated_mse)

        # Getting the r2 score by comparing the predicted value with the actual test value
        self.r2_scor = r2_score(self.Y_train, self.Y_pred)
        # print("r2_score ", r2_scor)

        return self.calculated_mse

    def print(self):
        print("accuracy score ", self.accuracy_score)
        print("mean square error ", self.calculated_mse)
        print("r2_score ", self.r2_scor)

    def predictTest(self):
        # Predicting the values based on the test data
        self.Y_pred = self.regressor.predict(self.X_test)

        # Getting the accuracy from the library method
        self.accuracy_score = self.regressor.score(self.X_test, self.Y_test)
        # print("accuracy score ", accuracy_score)

        # Getting the mean squared error by comparing the predicted value with the actual test value
        self.calculated_mse = mean_squared_error(self.Y_test, self.Y_pred)
        # print("mean square error ", calculated_mse)

        # Getting the r2 score by comparing the predicted value with the actual test value
        self.r2_scor = r2_score(self.Y_test, self.Y_pred)
        # print("r2_score ", r2_scor)

        return self.calculated_mse

    def plotLearningRate(self, epoch_count, min, max, step, color):
        mse_error = list()
        step_size = max
        x_scale = list()
        label = "epoch = "
        label += str(epoch_count)
        while (step_size >= min):
            self.train(epoch_count, step_size)
            mse_error.append(self.predictTest())
            x_scale.append(step_size)
            step_size = step_size - step
        return plt.scatter(x_scale, mse_error, color=color)
scaler=StandardScaler()
X[:,1:]=scaler.fit_transform(X[:,1:])

#%% train sklearn models

# pick models
regr_gd=SGDRegressor(fit_intercept=False,alpha=0.0001,max_iter=100000)
regr_lr=LinearRegression(fit_intercept=False)

# feed data
regr_gd.fit(X,y)
regr_lr.fit(X,y)

#%% prediction

# initial parameters
predict=np.array([1650,3]).reshape(1,-1)

# add features
predict=poly.fit_transform(predict)

# rescale
predict[:,1:]=scaler.transform(predict[:,1:])

print('Predicted price of a 1650 sq-ft, 3 br house (using sklearn lr): \n',
       regr_lr.predict(predict))
print('Predicted price of a 1650 sq-ft, 3 br house (using sklearn gd): \n',
       regr_gd.predict(predict))


示例#7
0
class SGD(AutoSklearnRegressionAlgorithm):
    def __init__(self, loss, penalty, alpha, fit_intercept, tol,
                 learning_rate, l1_ratio=0.15, epsilon=0.1,
                 eta0=0.01, power_t=0.5, average=False, random_state=None):
        self.loss = loss
        self.penalty = penalty
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.tol = tol
        self.learning_rate = learning_rate
        self.l1_ratio = l1_ratio
        self.epsilon = epsilon
        self.eta0 = eta0
        self.power_t = power_t
        self.random_state = random_state
        self.average = average

        self.estimator = None
        self.scaler = None

    def fit(self, X, y):
        self.iterative_fit(X, y, n_iter=2, refit=True)
        while not self.configuration_fully_fitted():
            self.iterative_fit(X, y, n_iter=2)

        return self

    def iterative_fit(self, X, y, n_iter=2, refit=False):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor
        import sklearn.preprocessing

        # Need to fit at least two iterations, otherwise early stopping will not
        # work because we cannot determine whether the algorithm actually
        # converged. The only way of finding this out is if the sgd spends less
        # iterations than max_iter. If max_iter == 1, it has to spend at least
        # one iteration and will always spend at least one iteration, so we
        # cannot know about convergence.
        n_iter = max(n_iter, 2)

        if refit:
            self.estimator = None
            self.scaler = None

        if self.estimator is None:

            self.alpha = float(self.alpha)
            self.fit_intercept = self.fit_intercept == 'True'
            self.tol = float(self.tol)
            self.l1_ratio = float(
                self.l1_ratio) if self.l1_ratio is not None else 0.15
            self.epsilon = float(
                self.epsilon) if self.epsilon is not None else 0.1
            self.eta0 = float(self.eta0)
            self.power_t = float(
                self.power_t) if self.power_t is not None else 0.25
            self.average = self.average == 'True'
            self.estimator = SGDRegressor(loss=self.loss,
                                          penalty=self.penalty,
                                          alpha=self.alpha,
                                          fit_intercept=self.fit_intercept,
                                          max_iter=n_iter,
                                          tol=self.tol,
                                          learning_rate=self.learning_rate,
                                          l1_ratio=self.l1_ratio,
                                          epsilon=self.epsilon,
                                          eta0=self.eta0,
                                          power_t=self.power_t,
                                          shuffle=True,
                                          average=self.average,
                                          random_state=self.random_state,
                                          warm_start=True)

            self.scaler = sklearn.preprocessing.StandardScaler(copy=True)
            self.scaler.fit(y.reshape((-1, 1)))
            Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel()
            self.estimator.fit(X, Y_scaled)
        else:
            self.estimator.max_iter += n_iter
            self.estimator.max_iter = min(self.estimator.max_iter, 1000)
            Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel()
            self.estimator._validate_params()
            self.estimator._partial_fit(
                X, Y_scaled,
                alpha=self.estimator.alpha,
                C=1.0,
                loss=self.estimator.loss,
                learning_rate=self.estimator.learning_rate,
                max_iter=n_iter,
                sample_weight=None,
                coef_init=None,
                intercept_init=None
            )

        if self.estimator._max_iter >= 1000 or n_iter > self.estimator.n_iter_:
            self.fully_fit_ = True

        return self

    def configuration_fully_fitted(self):
        if self.estimator is None:
            return False
        elif not hasattr(self, 'fully_fit_'):
            return False
        else:
            return self.fully_fit_

    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        Y_pred = self.estimator.predict(X)
        return self.scaler.inverse_transform(Y_pred)

    @staticmethod
    def get_properties(dataset_properties=None):
        return {'shortname': 'SGD Regressor',
                'name': 'Stochastic Gradient Descent Regressor',
                'handles_regression': True,
                'handles_classification': False,
                'handles_multiclass': False,
                'handles_multilabel': False,
                'is_deterministic': True,
                'handles_sparse': True,
                'input': (DENSE, SPARSE, UNSIGNED_DATA),
                'output': (PREDICTIONS,),
                }

    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = CategoricalHyperparameter("loss",
            ["squared_loss", "huber", "epsilon_insensitive", "squared_epsilon_insensitive"],
            default_value="squared_loss")
        penalty = CategoricalHyperparameter(
            "penalty", ["l1", "l2", "elasticnet"], default_value="l2")
        alpha = UniformFloatHyperparameter(
            "alpha", 1e-7, 1e-1, log=True, default_value=0.0001)
        l1_ratio = UniformFloatHyperparameter(
            "l1_ratio", 1e-9, 1., log=True, default_value=0.15)
        fit_intercept = UnParametrizedHyperparameter(
            "fit_intercept", "True")
        tol = UniformFloatHyperparameter(
            "tol", 1e-4, 1e-1, default_value=1e-3, log=True)
        epsilon = UniformFloatHyperparameter(
            "epsilon", 1e-5, 1e-1, default_value=0.1, log=True)
        learning_rate = CategoricalHyperparameter(
            "learning_rate", ["optimal", "invscaling", "constant"],
            default_value="invscaling")
        eta0 = UniformFloatHyperparameter(
            "eta0", 1e-7, 1e-1, default_value=0.01)
        power_t = UniformFloatHyperparameter(
            "power_t", 1e-5, 1, default_value=0.25)
        average = CategoricalHyperparameter(
            "average", ["False", "True"], default_value="False")

        cs.add_hyperparameters([loss, penalty, alpha, l1_ratio, fit_intercept,
                                tol, epsilon, learning_rate, eta0,
                                power_t, average])

        # TODO add passive/aggressive here, although not properly documented?
        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_condition = InCondition(epsilon, loss,
            ["huber", "epsilon_insensitive", "squared_epsilon_insensitive"])
        # eta0 seems to be always active according to the source code; when
        # learning_rate is set to optimial, eta0 is the starting value:
        # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx
        # eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling")
        #eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant")
        #eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant)
        power_t_condition = EqualsCondition(power_t, learning_rate,
                                            "invscaling")

        cs.add_conditions([elasticnet, epsilon_condition, power_t_condition])

        return cs
示例#8
0
X_train, y_train = X[:n_samples / 2], y[:n_samples / 2]
X_test, y_test = X[n_samples / 2:], y[n_samples / 2:]
print("test data sparsity: %f" % sparsity_ratio(X_test))

###############################################################################
clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000)
clf.fit(X_train, y_train)
print("model sparsity: %f" % sparsity_ratio(clf.coef_))


def benchmark_dense_predict():
    for _ in range(300):
        clf.predict(X_test)


def benchmark_sparse_predict():
    X_test_sparse = csr_matrix(X_test)
    for _ in range(300):
        clf.predict(X_test_sparse)


def score(y_test, y_pred, case):
    r2 = r2_score(y_test, y_pred)
    print("r^2 on test data (%s) : %f" % (case, r2))

score(y_test, clf.predict(X_test), 'dense model')
benchmark_dense_predict()
clf.sparsify()
score(y_test, clf.predict(X_test), 'sparse model')
benchmark_sparse_predict()
示例#9
0
class SGD(
        IterativeComponentWithSampleWeight,
        BaseRegressionModel,
):
    def __init__(self,
                 loss,
                 penalty,
                 alpha,
                 fit_intercept,
                 tol,
                 learning_rate,
                 epsilon_insensitive,
                 l1_ratio=0.15,
                 epsilon_huber=0.1,
                 eta0=0.01,
                 power_t=0.5,
                 average=False,
                 random_state=None):
        self.loss = loss
        self.penalty = penalty
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.tol = tol
        self.learning_rate = learning_rate
        self.l1_ratio = l1_ratio
        self.epsilon_huber = epsilon_huber
        self.epsilon_insensitive = epsilon_insensitive
        self.eta0 = eta0
        self.power_t = power_t
        self.random_state = random_state
        self.average = average
        self.estimator = None
        self.start_time = time.time()
        self.time_limit = None

    def iterative_fit(self, X, y, n_iter=2, refit=False, sample_weight=None):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor

        # Need to fit at least two iterations, otherwise early stopping will not
        # work because we cannot determine whether the algorithm actually
        # converged. The only way of finding this out is if the sgd spends less
        # iterations than max_iter. If max_iter == 1, it has to spend at least
        # one iteration and will always spend at least one iteration, so we
        # cannot know about convergence.

        if refit:
            self.estimator = None

        if self.estimator is None:
            self.fully_fit_ = False

            self.alpha = float(self.alpha)
            if not check_none(self.epsilon_insensitive):
                self.epsilon_insensitive = float(self.epsilon_insensitive)
            self.l1_ratio = float(self.l1_ratio) if self.l1_ratio is not None \
                else 0.15
            self.epsilon_huber = float(self.epsilon_huber) if self.epsilon_huber is not None \
                else 0.1
            self.eta0 = float(self.eta0) if self.eta0 is not None else 0.01
            self.power_t = float(self.power_t) if self.power_t is not None \
                else 0.5
            self.average = check_for_bool(self.average)
            self.fit_intercept = check_for_bool(self.fit_intercept)
            self.tol = float(self.tol)
            if self.loss == "huber":
                epsilon = self.epsilon_huber
            elif self.loss in [
                    "epsilon_insensitive", "squared_epsilon_insensitive"
            ]:
                epsilon = self.epsilon_insensitive
            else:
                epsilon = None
            self.estimator = SGDRegressor(loss=self.loss,
                                          penalty=self.penalty,
                                          alpha=self.alpha,
                                          fit_intercept=self.fit_intercept,
                                          max_iter=n_iter,
                                          tol=self.tol,
                                          learning_rate=self.learning_rate,
                                          l1_ratio=self.l1_ratio,
                                          epsilon=epsilon,
                                          eta0=self.eta0,
                                          power_t=self.power_t,
                                          shuffle=True,
                                          average=self.average,
                                          random_state=self.random_state,
                                          warm_start=True)
            self.estimator.fit(X, y, sample_weight=sample_weight)
        else:
            self.estimator.max_iter += n_iter
            self.estimator.max_iter = min(self.estimator.max_iter, 512)
            self.estimator._validate_params()
            self.estimator._partial_fit(
                X,
                y,
                alpha=self.estimator.alpha,
                C=1.0,
                loss=self.estimator.loss,
                learning_rate=self.estimator.learning_rate,
                max_iter=n_iter,
                sample_weight=sample_weight,
                coef_init=None,
                intercept_init=None)

        if self.estimator.max_iter >= 512 or n_iter > self.estimator.n_iter_:
            self.fully_fit_ = True

        return self

    def configuration_fully_fitted(self):
        if self.estimator is None:
            return False
        elif not hasattr(self, 'fully_fit_'):
            return False
        else:
            return self.fully_fit_

    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        return self.estimator.predict(X)

    @staticmethod
    def get_properties(dataset_properties=None):
        return {
            'shortname': 'SGD Regressor',
            'name': 'Stochastic Gradient Descent Regressor',
            'handles_regression': True,
            'handles_classification': False,
            'handles_multiclass': False,
            'handles_multilabel': False,
            'is_deterministic': True,
            'input': (DENSE, SPARSE, UNSIGNED_DATA),
            'output': (PREDICTIONS, )
        }

    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = CategoricalHyperparameter("loss", [
            "squared_loss", "huber", "epsilon_insensitive",
            "squared_epsilon_insensitive"
        ],
                                         default_value="squared_loss")
        penalty = CategoricalHyperparameter("penalty",
                                            ["l1", "l2", "elasticnet"],
                                            default_value="l2")
        alpha = UniformFloatHyperparameter("alpha",
                                           1e-7,
                                           1e-1,
                                           log=True,
                                           default_value=0.0001)
        l1_ratio = UniformFloatHyperparameter("l1_ratio",
                                              1e-9,
                                              1,
                                              log=True,
                                              default_value=0.15)
        fit_intercept = UnParametrizedHyperparameter("fit_intercept", "True")
        tol = UniformFloatHyperparameter("tol",
                                         1e-5,
                                         1e-1,
                                         log=True,
                                         default_value=1e-4)
        epsilon_huber = UniformFloatHyperparameter("epsilon_huber",
                                                   1e-5,
                                                   1e-1,
                                                   default_value=1e-4,
                                                   log=True)
        epsilon_insensitive = UniformFloatHyperparameter("epsilon_insensitive",
                                                         1e-5,
                                                         1e-1,
                                                         default_value=1e-4,
                                                         log=True)
        learning_rate = CategoricalHyperparameter(
            "learning_rate", ["optimal", "invscaling", "constant"],
            default_value="invscaling")
        eta0 = UniformFloatHyperparameter("eta0",
                                          1e-7,
                                          1e-1,
                                          default_value=0.01,
                                          log=True)
        power_t = UniformFloatHyperparameter("power_t",
                                             1e-5,
                                             1,
                                             log=True,
                                             default_value=0.5)
        average = CategoricalHyperparameter("average", ["False", "True"],
                                            default_value="False")
        cs.add_hyperparameters([
            loss, penalty, alpha, l1_ratio, fit_intercept, tol, epsilon_huber,
            epsilon_insensitive, learning_rate, eta0, power_t, average
        ])

        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_huber_condition = EqualsCondition(epsilon_huber, loss, "huber")
        epsilon_insensitive_condition = InCondition(
            epsilon_insensitive, loss,
            ["epsilon_insensitive", "squared_epsilon_insensitive"])
        power_t_condition = EqualsCondition(power_t, learning_rate,
                                            "invscaling")

        # eta0 is only relevant if learning_rate!='optimal' according to code
        # https://github.com/scikit-learn/scikit-learn/blob/0.19.X/sklearn/
        # linear_model/sgd_fast.pyx#L603
        eta0_in_inv_con = InCondition(eta0, learning_rate,
                                      ["invscaling", "constant"])
        cs.add_conditions([
            elasticnet, epsilon_huber_condition, epsilon_insensitive_condition,
            power_t_condition, eta0_in_inv_con
        ])

        return cs
示例#10
0
###############################################################################
clf = SGDRegressor(penalty="l1", alpha=0.2, fit_intercept=True, n_iter=2000)
clf.fit(X_train, y_train)
print("model sparsity: %f" % sparsity_ratio(clf.coef_))


@profile
def benchmark_dense_predict():
    for _ in range(300):
        clf.predict(X_test)


@profile
def benchmark_sparse_predict():
    X_test_sparse = csr_matrix(X_test)
    for _ in range(300):
        clf.predict(X_test_sparse)


def score(y_test, y_pred, case):
    r2 = r2_score(y_test, y_pred)
    print("r^2 on test data (%s) : %f" % (case, r2))


score(y_test, clf.predict(X_test), "dense model")
benchmark_dense_predict()
clf.sparsify()
score(y_test, clf.predict(X_test), "sparse model")
benchmark_sparse_predict()
# Check
print("mean:", np.mean(standardized_X_train, axis=0),
      np.mean(standardized_y_train, axis=0))  # mean should be ~0
print("std:", np.std(standardized_X_train, axis=0),
      np.std(standardized_y_train, axis=0))  # std should be 1

# Initialize the model
lm = SGDRegressor(loss="squared_loss",
                  penalty="none",
                  max_iter=args.num_epochs)

# Train
lm.fit(X=standardized_X_train, y=standardized_y_train)

# Predictions (unstandardize them)
pred_train = (lm.predict(standardized_X_train) *
              np.sqrt(y_scaler.var_)) + y_scaler.mean_
pred_test = (lm.predict(standardized_X_test) *
             np.sqrt(y_scaler.var_)) + y_scaler.mean_

# Train and test MSE
train_mse = np.mean((y_train - pred_train)**2)
test_mse = np.mean((y_test - pred_test)**2)
print("train_MSE: {0:.2f}, test_MSE: {1:.2f}".format(train_mse, test_mse))

# Figure size
plt.figure(figsize=(15, 5))

# Plot train data
plt.subplot(1, 2, 1)
plt.title("Train")
Note: L is loss function, R(w) is regularization term (penalty)

For Elastic Net R(w):
R(w) = p/2 * sum(wi^2) + (1 - p) * |wi| where p is given by 1 - l1_ratio

For inverse scaling learning_rate:
lr = eta0 / t^power_t

'''
regr = SGDRegressor(penalty = 'elasticnet', alpha = 0.0001, l1_ratio = 0.25, 
                    learning_rate = 'invscaling', eta0 = 0.01, power_t = 0.25, 
                    loss = 'epsilon_insensitive', epsilon = 0.1, shuffle = True, 
                    fit_intercept = True, n_iter = 1000000, average = False, verbose = 0)

regr.fit(x, y)
data_pred = regr.predict(x)
y_pred = scaler.inverse_transform(data_pred)

print('coefficients: \n', regr.coef_)

#if data is expected to be already centered then intercept_ is not needed
print('intercept: \n', regr.intercept_)

#Calculate mean squared error
print('Mean Squared Error: %.4f' 
      % mean_squared_error(y, data_pred))

#Calculate R^2 (regression score function)
print('Variance score: %.2f' % r2_score(y, data_pred))

x_axis = range(1, 11)
示例#13
0
class SGD(
    IterativeComponent,
    AutoSklearnRegressionAlgorithm,
):
    def __init__(self, loss, penalty, alpha, fit_intercept, tol,
                 learning_rate, l1_ratio=0.15, epsilon=0.1,
                 eta0=0.01, power_t=0.5, average=False, random_state=None):
        self.loss = loss
        self.penalty = penalty
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.tol = tol
        self.learning_rate = learning_rate
        self.l1_ratio = l1_ratio
        self.epsilon = epsilon
        self.eta0 = eta0
        self.power_t = power_t
        self.random_state = random_state
        self.average = average

        self.estimator = None
        self.scaler = None

    def iterative_fit(self, X, y, n_iter=2, refit=False):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor
        import sklearn.preprocessing

        # Need to fit at least two iterations, otherwise early stopping will not
        # work because we cannot determine whether the algorithm actually
        # converged. The only way of finding this out is if the sgd spends less
        # iterations than max_iter. If max_iter == 1, it has to spend at least
        # one iteration and will always spend at least one iteration, so we
        # cannot know about convergence.
        n_iter = max(n_iter, 2)

        if refit:
            self.estimator = None
            self.scaler = None

        if self.estimator is None:

            self.alpha = float(self.alpha)
            self.fit_intercept = check_for_bool(self.fit_intercept)
            self.tol = float(self.tol)
            self.l1_ratio = float(
                self.l1_ratio) if self.l1_ratio is not None else 0.15
            self.epsilon = float(
                self.epsilon) if self.epsilon is not None else 0.1
            self.eta0 = float(self.eta0)
            self.power_t = float(
                self.power_t) if self.power_t is not None else 0.25
            self.average = check_for_bool(self.average)
            self.estimator = SGDRegressor(loss=self.loss,
                                          penalty=self.penalty,
                                          alpha=self.alpha,
                                          fit_intercept=self.fit_intercept,
                                          max_iter=n_iter,
                                          tol=self.tol,
                                          learning_rate=self.learning_rate,
                                          l1_ratio=self.l1_ratio,
                                          epsilon=self.epsilon,
                                          eta0=self.eta0,
                                          power_t=self.power_t,
                                          shuffle=True,
                                          average=self.average,
                                          random_state=self.random_state,
                                          warm_start=True)

            self.scaler = sklearn.preprocessing.StandardScaler(copy=True)
            self.scaler.fit(y.reshape((-1, 1)))
            Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel()
            self.estimator.fit(X, Y_scaled)
        else:
            self.estimator.max_iter += n_iter
            self.estimator.max_iter = min(self.estimator.max_iter, 512)
            Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel()
            self.estimator._validate_params()
            self.estimator._partial_fit(
                X, Y_scaled,
                alpha=self.estimator.alpha,
                C=1.0,
                loss=self.estimator.loss,
                learning_rate=self.estimator.learning_rate,
                max_iter=n_iter,
                sample_weight=None,
                coef_init=None,
                intercept_init=None
            )

        if self.estimator.max_iter >= 512 or n_iter > self.estimator.n_iter_:
            self.fully_fit_ = True

        return self

    def configuration_fully_fitted(self):
        if self.estimator is None:
            return False
        elif not hasattr(self, 'fully_fit_'):
            return False
        else:
            return self.fully_fit_

    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        Y_pred = self.estimator.predict(X)
        return self.scaler.inverse_transform(Y_pred)

    @staticmethod
    def get_properties(dataset_properties=None):
        return {'shortname': 'SGD Regressor',
                'name': 'Stochastic Gradient Descent Regressor',
                'handles_regression': True,
                'handles_classification': False,
                'handles_multiclass': False,
                'handles_multilabel': False,
                'is_deterministic': True,
                'handles_sparse': True,
                'input': (DENSE, SPARSE, UNSIGNED_DATA),
                'output': (PREDICTIONS,),
                }

    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = CategoricalHyperparameter("loss",
            ["squared_loss", "huber", "epsilon_insensitive",
             "squared_epsilon_insensitive"],
            default_value="squared_loss")
        penalty = CategoricalHyperparameter(
            "penalty", ["l1", "l2", "elasticnet"], default_value="l2")
        alpha = UniformFloatHyperparameter(
            "alpha", 1e-7, 1e-1, log=True, default_value=0.0001)
        l1_ratio = UniformFloatHyperparameter(
            "l1_ratio", 1e-9, 1., log=True, default_value=0.15)
        fit_intercept = UnParametrizedHyperparameter(
            "fit_intercept", "True")
        tol = UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default_value=1e-4, log=True)
        epsilon = UniformFloatHyperparameter(
            "epsilon", 1e-5, 1e-1, default_value=0.1, log=True)
        learning_rate = CategoricalHyperparameter(
            "learning_rate", ["optimal", "invscaling", "constant"],
            default_value="invscaling")
        eta0 = UniformFloatHyperparameter(
            "eta0", 1e-7, 1e-1, default_value=0.01, log=True)
        power_t = UniformFloatHyperparameter(
            "power_t", 1e-5, 1, default_value=0.25)
        average = CategoricalHyperparameter(
            "average", ["False", "True"], default_value="False")

        cs.add_hyperparameters([loss, penalty, alpha, l1_ratio, fit_intercept,
                                tol, epsilon, learning_rate, eta0,
                                power_t, average])

        # TODO add passive/aggressive here, although not properly documented?
        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_condition = InCondition(epsilon, loss,
            ["huber", "epsilon_insensitive", "squared_epsilon_insensitive"])

        # eta0 is only relevant if learning_rate!='optimal' according to code
        # https://github.com/scikit-learn/scikit-learn/blob/0.19.X/sklearn/
        # linear_model/sgd_fast.pyx#L603
        eta0_in_inv_con = InCondition(eta0, learning_rate, ["invscaling",
                                                            "constant"])
        power_t_condition = EqualsCondition(power_t, learning_rate,
                                            "invscaling")

        cs.add_conditions([elasticnet, epsilon_condition, power_t_condition,
                           eta0_in_inv_con])

        return cs
示例#14
0
def plt_helper(label, title, xlabel='x 轴', ylabel='y 轴'):
    fig = plt.figure()
    ax = fig.add_subplot(111, label=label)
    ax.set_title(title, fontproperties=myfont)
    ax.set_xlabel(xlabel, fontproperties=myfont)
    ax.set_ylabel(ylabel, fontproperties=myfont)
    ax.grid(True)
    return ax


ax1 = plt_helper('ax1', '观察模拟数据的分布')
ax1.plot(X[:, 0], y, 'r*')
#%%
linear_SGD = SGDRegressor(loss='squared_loss', max_iter=100)
linear_SGD.fit(train_x, train_y)
y_SGD = linear_SGD.predict(test_x)

linear_rg = LinearRegression(
    fit_intercept=True,  #计算截距
    normalize=False,  #回归之前不对数据集进行规范化处理
    copy_X=True,  #复制X,不会对X的原始值产生影响
    n_jobs=-1)  #使用所有的CPU
linear_rg.fit(train_x, train_y)
y_rg = linear_rg.predict(test_x)

print('模拟数据参数', coef)
print('SGDRegressor模型参数', linear_SGD.coef_)
print('LinearRegression模型参数', linear_rg.coef_)

scores = cross_val_score(linear_SGD, train_x, train_y, cv=5)
print('SGDRegressor交叉验证R方值:', scores)