示例#1
0
def _run_answer_test(pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    _barnes_hut_tsne.gradient(pij_input, pos_output, neighbors, grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4)
示例#2
0
def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    _barnes_hut_tsne.gradient(pij_input, pos_output, neighbors,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4)
示例#3
0
文件: mytsne.py 项目: oudalab/bismol
def _kl_divergence_bh(params, P, neighbors, degrees_of_freedom, n_samples,
                      n_components, angle=0.5, skip_num_points=0,
                      verbose=False):
    """t-SNE objective function: KL divergence of p_ijs and q_ijs.
    Uses Barnes-Hut tree methods to calculate the gradient that
    runs in O(NlogN) instead of O(N^2)
    Parameters
    ----------
    params : array, shape (n_params,)
        Unraveled embedding.
    P : array, shape (n_samples * (n_samples-1) / 2,)
        Condensed joint probability matrix.
    neighbors: int64 array, shape (n_samples, K)
        Array with element [i, j] giving the index for the jth
        closest neighbor to point i.
    degrees_of_freedom : float
        Degrees of freedom of the Student's-t distribution.
    n_samples : int
        Number of samples.
    n_components : int
        Dimension of the embedded space.
    angle : float (default: 0.5)
        This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
        'angle' is the angular size (referred to as theta in [3]) of a distant
        node as measured from a point. If this size is below 'angle' then it is
        used as a summary node of all points contained within it.
        This method is not very sensitive to changes in this parameter
        in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
        computation time and angle greater 0.8 has quickly increasing error.
    skip_num_points : int (optional, default:0)
        This does not compute the gradient for points with indices below
        `skip_num_points`. This is useful when computing transforms of new
        data where you'd like to keep the old data fixed.
    verbose : int
        Verbosity level.
    Returns
    -------
    kl_divergence : float
        Kullback-Leibler divergence of p_ij and q_ij.
    grad : array, shape (n_params,)
        Unraveled gradient of the Kullback-Leibler divergence with respect to
        the embedding.
    """
    params = astype(params, np.float32, copy=False)
    X_embedded = params.reshape(n_samples, n_components)
    neighbors = astype(neighbors, np.int64, copy=False)
    if len(P.shape) == 1:
        sP = squareform(P).astype(np.float32)
    else:
        sP = P.astype(np.float32)

    grad = np.zeros(X_embedded.shape, dtype=np.float32)
    error = _barnes_hut_tsne.gradient(sP, X_embedded, neighbors,
                                      grad, angle, n_components, verbose,
                                      dof=degrees_of_freedom)
    c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
    grad = grad.ravel()
    grad *= c

    return error, grad
示例#4
0
def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64, copy=False)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    from scipy.sparse import csr_matrix
    P = csr_matrix(pij_input)

    neighbors = P.indices.astype(np.int64)
    indptr = P.indptr.astype(np.int64)

    _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4)
示例#5
0
def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64, copy=False)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    from scipy.sparse import csr_matrix
    P = csr_matrix(pij_input)

    neighbors = P.indices.astype(np.int64)
    indptr = P.indptr.astype(np.int64)

    _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4)
示例#6
0
def KL_divergeance_BH(flat_X_LD, P, degrees_of_freedom, n_samples, n_components,
                      skip_num_points, compute_error,
                      angle=0.5, verbose=False,  num_threads=1):

    flat_X_LD = flat_X_LD.astype(np.float32, copy=False)
    X_embedded = flat_X_LD.reshape(n_samples, n_components)

    val_P = P.data.astype(np.float32, copy=False)
    neighbors = P.indices.astype(np.int64, copy=False)
    indptr = P.indptr.astype(np.int64, copy=False)

    grad = np.zeros(X_embedded.shape, dtype=np.float32)
    error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr,
                                      grad, angle, n_components, verbose,
                                      dof=degrees_of_freedom,
                                      compute_error=compute_error,
                                      num_threads=num_threads)
    c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
    grad = grad.ravel()
    grad *= c

    return error, grad
示例#7
0
def _kl_divergence_bh(params, P, degrees_of_freedom, n_samples, n_components,
                      angle=0.5, skip_num_points=0, verbose=False):
    """t-SNE objective function: KL divergence of p_ijs and q_ijs.

    Uses Barnes-Hut tree methods to calculate the gradient that
    runs in O(NlogN) instead of O(N^2)

    Parameters
    ----------
    params : array, shape (n_params,)
        Unraveled embedding.

    P : csr sparse matrix, shape (n_samples, n_sample)
        Sparse approximate joint probability matrix, computed only for the
        k nearest-neighbors and symmetrized.

    degrees_of_freedom : float
        Degrees of freedom of the Student's-t distribution.

    n_samples : int
        Number of samples.

    n_components : int
        Dimension of the embedded space.

    angle : float (default: 0.5)
        This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
        'angle' is the angular size (referred to as theta in [3]) of a distant
        node as measured from a point. If this size is below 'angle' then it is
        used as a summary node of all points contained within it.
        This method is not very sensitive to changes in this parameter
        in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
        computation time and angle greater 0.8 has quickly increasing error.

    skip_num_points : int (optional, default:0)
        This does not compute the gradient for points with indices below
        `skip_num_points`. This is useful when computing transforms of new
        data where you'd like to keep the old data fixed.

    verbose : int
        Verbosity level.

    Returns
    -------
    kl_divergence : float
        Kullback-Leibler divergence of p_ij and q_ij.

    grad : array, shape (n_params,)
        Unraveled gradient of the Kullback-Leibler divergence with respect to
        the embedding.
    """
    params = params.astype(np.float32, copy=False)
    X_embedded = params.reshape(n_samples, n_components)

    val_P = P.data.astype(np.float32, copy=False)
    neighbors = P.indices.astype(np.int64, copy=False)
    indptr = P.indptr.astype(np.int64, copy=False)

    grad = np.zeros(X_embedded.shape, dtype=np.float32)
    error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr,
                                      grad, angle, n_components, verbose,
                                      dof=degrees_of_freedom)
    c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
    grad = grad.ravel()
    grad *= c

    return error, grad