def test_agglomerative_clustering_with_distance_threshold_edge_case( linkage, threshold, y_true): # test boundary case of distance_threshold matching the distance X = [[0], [1]] clusterer = AgglomerativeClustering(n_clusters=None, distance_threshold=threshold, linkage=linkage) y_pred = clusterer.fit_predict(X) assert adjusted_rand_score(y_true, y_pred) == 1
def test_agglomerative_clustering_with_distance_threshold_edge_case( linkage, threshold, y_true): # test boundary case of distance_threshold matching the distance X = [[0], [1]] clusterer = AgglomerativeClustering( n_clusters=None, distance_threshold=threshold, linkage=linkage) y_pred = clusterer.fit_predict(X) assert adjusted_rand_score(y_true, y_pred) == 1
def cluster_ari(y_true, y_pred): from sklearn.metrics.cluster.supervised import adjusted_rand_score return adjusted_rand_score(y_true, y_pred)
TDS.insert(j,a) #adding new SOM data for Training data_K.insert(j,K[j]) #clusters corresponding to new data for SOM Training data = np.array([]) data=np.array(TDS) if not TDS: break # If Training DataSet(TDS) is empty, no training takes place and training stops for i in range(len(population)): file.write("chromosome {0} : ".format(i)+ str(population[i])) file.write("\n Objectives (Sil, PBM) : "+str(objectives[i])) file.write("\nCluster size{0} :".format(i)+str(K[i])+'\n') file.write("Predicted Label for {0}: ".format(i)+ str(Final_label[i])) ari=adjusted_rand_score(actual_label,Final_label[i]) file.write("\n ARI Score {0} : ".format(i)+ str(ari)) file.write("\nMinkowski score {0} : ".format(i)+str(cal_minkowski_score(actual_label, Final_label[i]))) file.write("\n----------------------------------------------------------------------------------------------------------------------------\n") print "Returned pop : ",population print "Objectives : ",objectives return_ss = [item[0] for item in objectives] return_di = [item[1] for item in objectives] print "PBM : ",return_di print "SS : ",return_ss print "Clusters : ", K print "Max PBM : ",max(return_di) print "Max Silhouette score : ",max(return_ss)