示例#1
0
def test_min_max_scaler_zero_variance_features():
    # Check min max scaler on toy data with zero variance features
    X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]]

    X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]]

    # default params
    scaler = MinMaxScaler()
    X_trans = scaler.fit_transform(X)
    X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]]
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    X_trans_new = scaler.transform(X_new)
    X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]]
    assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)

    # not default params
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]]
    assert_array_almost_equal(X_trans, X_expected_1_2)

    # function interface
    X_trans = minmax_scale(X)
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans = minmax_scale(X, feature_range=(1, 2))
    assert_array_almost_equal(X_trans, X_expected_1_2)
def test_min_max_scaler_zero_variance_features():
    # Check min max scaler on toy data with zero variance features
    X = [[0., 1., +0.5],
         [0., 1., -0.1],
         [0., 1., +1.1]]

    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]

    # default params
    scaler = MinMaxScaler()
    X_trans = scaler.fit_transform(X)
    X_expected_0_1 = [[0., 0., 0.5],
                      [0., 0., 0.0],
                      [0., 0., 1.0]]
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    X_trans_new = scaler.transform(X_new)
    X_expected_0_1_new = [[+0., 1., 0.500],
                          [-1., 0., 0.083],
                          [+0., 0., 1.333]]
    assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)

    # not default params
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    X_expected_1_2 = [[1., 1., 1.5],
                      [1., 1., 1.0],
                      [1., 1., 2.0]]
    assert_array_almost_equal(X_trans, X_expected_1_2)

    # function interface
    X_trans = minmax_scale(X)
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans = minmax_scale(X, feature_range=(1, 2))
    assert_array_almost_equal(X_trans, X_expected_1_2)
示例#3
0
def MyWavelets(data,MyWidths):
    Widths = MyWidths

    ''' 将int型data转为float型sig '''
    sig = np.ones(len(data),np.float)  #产生空的float型sig
    for i in range(0,len(data)): 
        sig[i] = float(data[i])

    sig = np.array( sig )
    wa = WaveletAnalysis(sig, wavelet=Morlet() )
    # wavelet power spectrum
    power = wa.wavelet_power

    # scales 
    scales = wa.scales

    # associated time vector
    t = wa.time

    # reconstruction of the original data
    rx = wa.reconstruction()
    

    ########################################
    # 数据逐帧 0-1标准化
    # print(power.shape)
    # power = np.transpose(power) #转置
    power = power.T
    # print(power.shape)

    # # power_out = np.array([])
    power_out = []
    for i in power:
    #     # np.append(power_out, minmax_scale(i), axis = 0)
        # power_out.append( minmax_scale(i).tolist() )
        power_out.append( minmax_scale(i))
        # print(max( minmax_scale(i) ))
    # power_out = np.array(power_out)


    return power_out
示例#4
0
def test_minmax_scale_axis1():
    X = iris.data
    X_trans = minmax_scale(X, axis=1)
    assert_array_almost_equal(np.min(X_trans, axis=1), 0)
    assert_array_almost_equal(np.max(X_trans, axis=1), 1)
def test_minmax_scale_axis1():
    X = iris.data
    X_trans = minmax_scale(X, axis=1)
    assert_array_almost_equal(np.min(X_trans, axis=1), 0)
    assert_array_almost_equal(np.max(X_trans, axis=1), 1)
示例#6
0
def minmax_demo():

    data = [[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]
    minmax = minmax_scale(data)

    print(minmax)
示例#7
0
from sklearn.preprocessing.data import minmax_scale 
import numpy as np
X = np.array([[ 10., -1.,  4.],
              [ 2.,  0., 5.],
              [ 0.,  0., -1.]])
# min_max_scaler = preprocessing.MinMaxScaler()
# X_minMax = min_max_scaler.minmax_scale(X)
for i in X:
    X_minMax = minmax_scale(i)
    print(X_minMax )