示例#1
0
def standardize(df):
    X = df.drop(['id', 'group'], axis=1)
    X.ix[X.gender == 'f', 'gender'] = 1.0
    X.ix[X.gender == 'm', 'gender'] = -1.0
    X['gender'] = pd.to_numeric(X.gender)
    X = StandardScaler().fit_transform(X.as_matrix())
    return X
# Encode the nta column
le = LabelEncoder()
nta_encoded = le.fit_transform(data.nta)
data['nta_encoded'] = nta_encoded

# Drop the columns we won't use for our model
data.drop(['nta','date_hour','nta_dt','nbhd_name','Unnamed: 0'],axis=1,inplace=True)

# Scale our data (not every column needs to be scaled)
to_scale = data[(data.columns-['month','day','hour','nta_encoded'])]
X = StandardScaler().fit_transform(to_scale)
X = pd.DataFrame(X)
for col in ['month','day','hour','nta_encoded']:
    X[col] = data[col]
X = X.as_matrix()

# We want to determine the number of bins we are going to classify into by using
# k-means clustering different values of n clusters. We are going to choose the
# n with the best silhouette score
cluster_scores = []
for n in range(3,6):
    # Initialize and fit a KMeans object
    k_means = cluster.KMeans(n_clusters=n,n_jobs=-1,verbose=1)
    k_means.fit(X)
    # Get the cluster labels for each point
    labels = k_means.labels_
    # Initialize a list to store this n's silhouette scores
    scores = []
    # We need to limit the sample_size when calculating silhouette scores due to
    # computation time