def test_count_nonzero():
    X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]],
                 dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    X_nonzero = X != 0
    sample_weight = [.5, .2, .3, .1, .1]
    X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]

    for axis in [0, 1, -1, -2, None]:
        assert_array_almost_equal(count_nonzero(X_csr, axis=axis),
                                  X_nonzero.sum(axis=axis))
        assert_array_almost_equal(
            count_nonzero(X_csr, axis=axis, sample_weight=sample_weight),
            X_nonzero_weighted.sum(axis=axis))

    assert_raises(TypeError, count_nonzero, X_csc)
    assert_raises(ValueError, count_nonzero, X_csr, axis=2)

    assert (count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr,
                                                                axis=1).dtype)
    assert (count_nonzero(X_csr, axis=0,
                          sample_weight=sample_weight).dtype == count_nonzero(
                              X_csr, axis=1,
                              sample_weight=sample_weight).dtype)

    # Check dtypes with large sparse matrices too
    X_csr.indices = X_csr.indices.astype(np.int64)
    X_csr.indptr = X_csr.indptr.astype(np.int64)
    assert (count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr,
                                                                axis=1).dtype)
    assert (count_nonzero(X_csr, axis=0,
                          sample_weight=sample_weight).dtype == count_nonzero(
                              X_csr, axis=1,
                              sample_weight=sample_weight).dtype)
示例#2
0
def multilabel_confusion_matrix(y_pred, y_true, sample_weight=None,
                                samplewise=False):
    r"""
    Compute a confusion matrix for each class or sample in the output.
    If `sample_weight` is provided, it is required to have the same shape as y_pred
    This function is inspired by issue #11179 on the sklearn github
    :see: https://github.com/scikit-learn/scikit-learn/pull/11179
    and related pull request for a detailled overview

    Arguments
    ----------
        y_pred: numpy.ndarray
            predicted value
        y_true: numpy.ndarray
            ground truth
        sample_weight: numpy.ndarray, optional
            sample weights for each
            example in the output.
        samplewise: bool optional
            Whether to compute the confusion matrix
            samplewise or taskwise

    Returns
    -------
        a confusion matrix of size (N, 2, 2), where N is either the number of labels
        or the total number of samples.

    """
    y_true = ss.csr_matrix(y_true)
    y_pred = ss.csr_matrix(y_pred)
    sum_axis = 1 if samplewise else 0

    # calculate weighted counts
    true_and_pred = y_true.multiply(y_pred)
    tp_sum = sparsefuncs.count_nonzero(true_and_pred, axis=sum_axis,
                                       sample_weight=sample_weight)
    pred_sum = sparsefuncs.count_nonzero(y_pred, axis=sum_axis,
                                         sample_weight=sample_weight)
    true_sum = sparsefuncs.count_nonzero(y_true, axis=sum_axis,
                                         sample_weight=sample_weight)

    fp = pred_sum - tp_sum
    fn = true_sum - tp_sum
    tp = tp_sum

    if sample_weight is not None and samplewise:
        sample_weight = np.array(sample_weight)
        tp = np.array(tp)
        fp = np.array(fp)
        fn = np.array(fn)
        tn = sample_weight * y_true.shape[1] - tp - fp - fn
    elif sample_weight is not None:
        tn = sum(sample_weight) - tp - fp - fn
    elif samplewise:
        tn = y_true.shape[1] - tp - fp - fn
    else:
        tn = y_true.shape[0] - tp - fp - fn

    return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)
def test_count_nonzero():
    X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    X_nonzero = X != 0
    sample_weight = [0.5, 0.2, 0.3, 0.1, 0.1]
    X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]

    for axis in [0, 1, -1, -2, None]:
        assert_array_almost_equal(count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis))
        assert_array_almost_equal(
            count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), X_nonzero_weighted.sum(axis=axis)
        )

    assert_raises(TypeError, count_nonzero, X_csc)
    assert_raises(ValueError, count_nonzero, X_csr, axis=2)
示例#4
0
def f1_per_sample(y_true, y_pred):
    if isdense(y_true) or isdense(y_pred):
        y_true = sp.csr_matrix(y_true)
        y_pred = sp.csr_matrix(y_pred)
    sum_axis = 1
    true_and_pred = y_true.multiply(y_pred)
    tp_sum = count_nonzero(true_and_pred, axis=sum_axis)
    pred_sum = count_nonzero(y_pred, axis=sum_axis)
    true_sum = count_nonzero(y_true, axis=sum_axis)

    with np.errstate(divide='ignore', invalid='ignore'):
        precision = _prf_divide(tp_sum, pred_sum)
        recall = _prf_divide(tp_sum, true_sum)
        f_score = (2 * precision * recall / (1 * precision + recall))
        f_score[tp_sum == 0] = 0.0

    return f_score
示例#5
0
def f1_per_sample(y_true, y_pred):
    if isdense(y_true) or isdense(y_pred):
        y_true = sp.csr_matrix(y_true)
        y_pred = sp.csr_matrix(y_pred)
    sum_axis = 1
    true_and_pred = y_true.multiply(y_pred)
    tp_sum = count_nonzero(true_and_pred, axis=sum_axis)
    pred_sum = count_nonzero(y_pred, axis=sum_axis)
    true_sum = count_nonzero(y_true, axis=sum_axis)

    with np.errstate(divide='ignore', invalid='ignore'):
        precision = _prf_divide(tp_sum, pred_sum)
        recall = _prf_divide(tp_sum, true_sum)
        f_score = (2 * precision * recall / (1 * precision + recall))
        f_score[tp_sum == 0] = 0.0

    return f_score
示例#6
0
def test_count_nonzero():
    X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]],
                 dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    X_nonzero = X != 0
    sample_weight = [.5, .2, .3, .1, .1]
    X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]

    for axis in [0, 1, -1, -2, None]:
        assert_array_almost_equal(count_nonzero(X_csr, axis=axis),
                                  X_nonzero.sum(axis=axis))
        assert_array_almost_equal(
            count_nonzero(X_csr, axis=axis, sample_weight=sample_weight),
            X_nonzero_weighted.sum(axis=axis))

    assert_raises(TypeError, count_nonzero, X_csc)
    assert_raises(ValueError, count_nonzero, X_csr, axis=2)
示例#7
0
def test_count_nonzero():
    X = np.array([[0, 3, 0],
                  [2, -1, 0],
                  [0, 0, 0],
                  [9, 8, 7],
                  [4, 0, 5]], dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    X_nonzero = X != 0
    sample_weight = [.5, .2, .3, .1, .1]
    X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]

    for axis in [0, 1, -1, -2, None]:
        assert_array_almost_equal(count_nonzero(X_csr, axis=axis),
                                  X_nonzero.sum(axis=axis))
        assert_array_almost_equal(count_nonzero(X_csr, axis=axis,
                                                sample_weight=sample_weight),
                                  X_nonzero_weighted.sum(axis=axis))

    assert_raises(TypeError, count_nonzero, X_csc)
    assert_raises(ValueError, count_nonzero, X_csr, axis=2)

    assert (count_nonzero(X_csr, axis=0).dtype ==
            count_nonzero(X_csr, axis=1).dtype)
    assert (count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype ==
            count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype)

    # Check dtypes with large sparse matrices too
    # XXX: test fails on Appveyor (python2.7 32bit)
    try:
        X_csr.indices = X_csr.indices.astype(np.int64)
        X_csr.indptr = X_csr.indptr.astype(np.int64)
        assert (count_nonzero(X_csr, axis=0).dtype ==
                count_nonzero(X_csr, axis=1).dtype)
        assert (count_nonzero(X_csr, axis=0,
                              sample_weight=sample_weight).dtype ==
                count_nonzero(X_csr, axis=1,
                              sample_weight=sample_weight).dtype)
    except TypeError as e:
        if ("according to the rule 'safe'" in e.args[0] and
                np.intp().nbytes < 8):
            pass
        else:
            raise
示例#8
0
def accuracy_rounding_score(y_true,
                            y_pred,
                            normalize=True,
                            sample_weight=None):
    for p in range(0, y_pred.size):
        labels = [
            500., 1000., 1500., 2000., 2500., 3000., 3500., 4000., 4500.,
            5000., 6000., 7000., 8000., 9000., 10000., 12500., 15000.
        ]
        y_pred[p] = min(labels, key=lambda x: abs(x - y_pred[p]))
    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    if y_type.startswith('multilabel'):
        differing_labels = count_nonzero(y_true - y_pred, axis=1)
        score = differing_labels == 0
    else:
        score = y_true == y_pred

    return _weighted_sum(score, sample_weight, normalize)
示例#9
0
def precision_recall_fscore_support(y_true,
                                    y_pred,
                                    beta=1.0,
                                    labels=None,
                                    pos_label=1,
                                    average=None,
                                    warn_for=('precision', 'recall',
                                              'f-score'),
                                    sample_weight=None):
    """Compute precision, recall, F-measure and support for each class

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The F-beta score can be interpreted as a weighted harmonic mean of
    the precision and recall, where an F-beta score reaches its best
    value at 1 and worst score at 0.

    The F-beta score weights recall more than precision by a factor of
    ``beta``. ``beta == 1.0`` means recall and precision are equally important.

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average precision, recall and F-measure if ``average``
    is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    beta : float, 1.0 by default
        The strength of recall versus precision in the F-score.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \
                       'weighted']
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    warn_for : tuple or set, for internal use
        This determines which warnings will be made in the case that this
        function is being used to return only one of its metrics.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    precision : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    recall : float (if average is not None) or array of float, , shape =\
        [n_unique_labels]

    fbeta_score : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    support : int (if average is not None) or array of int, shape =\
        [n_unique_labels]
        The number of occurrences of each label in ``y_true``.

    References
    ----------
    .. [1] `Wikipedia entry for the Precision and recall
           <https://en.wikipedia.org/wiki/Precision_and_recall>`_

    .. [2] `Wikipedia entry for the F1-score
           <https://en.wikipedia.org/wiki/F1_score>`_

    .. [3] `Discriminative Methods for Multi-labeled Classification Advances
           in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu
           Godbole, Sunita Sarawagi
           <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_

    Examples
    --------
    >>> from sklearn.metrics import precision_recall_fscore_support
    >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
    >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
    >>> precision_recall_fscore_support(y_true, y_pred, average='macro')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='micro')
    ... # doctest: +ELLIPSIS
    (0.33..., 0.33..., 0.33..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)

    It is possible to compute per-label precisions, recalls, F1-scores and
    supports instead of averaging:

    >>> precision_recall_fscore_support(y_true, y_pred, average=None,
    ... labels=['pig', 'dog', 'cat'])
    ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE
    (array([0.        , 0.        , 0.66...]),
     array([0., 0., 1.]), array([0. , 0. , 0.8]),
     array([2, 2, 2]))

    """
    average_options = (None, 'micro', 'macro', 'weighted', 'samples')
    if average not in average_options and average != 'binary':
        raise ValueError('average has to be one of ' + str(average_options))
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    present_labels = unique_labels(y_true, y_pred)

    if average == 'binary':
        if y_type == 'binary':
            if pos_label not in present_labels:
                if len(present_labels) < 2:
                    # Only negative labels
                    return (0., 0., 0., 0)
                else:
                    raise ValueError("pos_label=%r is not a valid label: %r" %
                                     (pos_label, present_labels))
            labels = [pos_label]
        else:
            raise ValueError("Target is %s but average='binary'. Please "
                             "choose another average setting." % y_type)
    elif pos_label not in (None, 1):
        warnings.warn(
            "Note that pos_label (set to %r) is ignored when "
            "average != 'binary' (got %r). You may use "
            "labels=[pos_label] to specify a single positive class." %
            (pos_label, average), UserWarning)

    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    # Calculate tp_sum, pred_sum, true_sum ###

    if y_type.startswith('multilabel'):
        sum_axis = 1 if average == 'samples' else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.all(labels == present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred,
                               axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)

    elif average == 'samples':
        raise ValueError("Sample-based precision, recall, fscore is "
                         "not meaningful outside multilabel "
                         "classification. See the accuracy_score instead.")
    else:
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])

    # Finally, we have all our sufficient statistics. Divide! #

    beta2 = beta**2
    with np.errstate(divide='ignore', invalid='ignore'):
        # Divide, and on zero-division, set scores to 0 and warn:

        # Oddly, we may get an "invalid" rather than a "divide" error
        # here.
        precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted',
                                average, warn_for)
        recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average,
                             warn_for)
        # Don't need to warn for F: either P or R warned, or tp == 0 where pos
        # and true are nonzero, in which case, F is well-defined and zero
        f_score = ((1 + beta2) * precision * recall /
                   (beta2 * precision + recall))
        f_score[tp_sum == 0] = 0.0

    # Average the results

    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    if average is not None:
        assert average != 'binary' or len(precision) == 1
        precision = np.average(precision, weights=weights)
        recall = np.average(recall, weights=weights)
        f_score = np.average(f_score, weights=weights)
        true_sum = None  # return no support

    return precision, recall, f_score, true_sum
示例#10
0
def multilabel_confusion_matrix(y_true,
                                y_pred,
                                sample_weight=None,
                                labels=None,
                                samplewise=False):
    """Compute a confusion matrix for each class or sample
    .. versionadded:: 0.21
    Compute class-wise (default) or sample-wise (samplewise=True) multilabel
    confusion matrix to evaluate the accuracy of a classification, and output
    confusion matrices for each class or sample.
    In multilabel confusion matrix :math:`MCM`, the count of true negatives
    is :math:`MCM_{:,0,0}`, false negatives is :math:`MCM_{:,1,0}`,
    true positives is :math:`MCM_{:,1,1}` and false positives is
    :math:`MCM_{:,0,1}`.
    Multiclass data will be treated as if binarized under a one-vs-rest
    transformation. Returned confusion matrices will be in the order of
    sorted unique labels in the union of (y_true, y_pred).
    Read more in the :ref:`User Guide <multilabel_confusion_matrix>`.
    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        of shape (n_samples, n_outputs) or (n_samples,)
        Ground truth (correct) target values.
    y_pred : 1d array-like, or label indicator array / sparse matrix
        of shape (n_samples, n_outputs) or (n_samples,)
        Estimated targets as returned by a classifier
    sample_weight : array-like of shape = (n_samples,), optional
        Sample weights
    labels : array-like
        A list of classes or column indices to select some (or to force
        inclusion of classes absent from the data)
    samplewise : bool, default=False
        In the multilabel case, this calculates a confusion matrix per sample
    Returns
    -------
    multi_confusion : array, shape (n_outputs, 2, 2)
        A 2x2 confusion matrix corresponding to each output in the input.
        When calculating class-wise multi_confusion (default), then
        n_outputs = n_labels; when calculating sample-wise multi_confusion
        (samplewise=True), n_outputs = n_samples. If ``labels`` is defined,
        the results will be returned in the order specified in ``labels``,
        otherwise the results will be returned in sorted order by default.
    See also
    --------
    confusion_matrix
    Notes
    -----
    The multilabel_confusion_matrix calculates class-wise or sample-wise
    multilabel confusion matrices, and in multiclass tasks, labels are
    binarized under a one-vs-rest way; while confusion_matrix calculates
    one confusion matrix for confusion between every two classes.
    Examples
    --------
    Multilabel-indicator case:
    >>> import numpy as np
    >>> from sklearn.metrics import multilabel_confusion_matrix
    >>> y_true = np.array([[1, 0, 1],
    ...                    [0, 1, 0]])
    >>> y_pred = np.array([[1, 0, 0],
    ...                    [0, 1, 1]])
    >>> multilabel_confusion_matrix(y_true, y_pred)
    array([[[1, 0],
            [0, 1]],
    <BLANKLINE>
           [[1, 0],
            [0, 1]],
    <BLANKLINE>
           [[0, 1],
            [1, 0]]])
    Multiclass case:
    >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
    >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
    >>> multilabel_confusion_matrix(y_true, y_pred,
    ...                             labels=["ant", "bird", "cat"])
    array([[[3, 1],
            [0, 2]],
    <BLANKLINE>
           [[5, 0],
            [1, 0]],
    <BLANKLINE>
           [[2, 1],
            [1, 2]]])
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
    check_consistent_length(y_true, y_pred, sample_weight)

    if y_type not in ("binary", "multiclass", "multilabel-indicator"):
        raise ValueError("%s is not supported" % y_type)

    present_labels = unique_labels(y_true, y_pred)
    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    if y_true.ndim == 1:
        if samplewise:
            raise ValueError("Samplewise metrics are not available outside of "
                             "multilabel classification.")

        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    else:
        sum_axis = 1 if samplewise else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.array_equal(labels, present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred,
                               axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)

    fp = pred_sum - tp_sum
    fn = true_sum - tp_sum
    tp = tp_sum

    if sample_weight is not None and samplewise:
        sample_weight = np.array(sample_weight)
        tp = np.array(tp)
        fp = np.array(fp)
        fn = np.array(fn)
        tn = sample_weight * y_true.shape[1] - tp - fp - fn
    elif sample_weight is not None:
        tn = sum(sample_weight) - tp - fp - fn
    elif samplewise:
        tn = y_true.shape[1] - tp - fp - fn
    else:
        tn = y_true.shape[0] - tp - fp - fn

    return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)
示例#11
0
def label_ranking_loss(y_true, y_score, sample_weight=None):
    """Compute Ranking loss measure

    Compute the average number of label pairs that are incorrectly ordered
    given y_score weighted by the size of the label set and the number of
    labels not in the label set.

    This is similar to the error set size, but weighted by the number of
    relevant and irrelevant labels. The best performance is achieved with
    a ranking loss of zero.

    Read more in the :ref:`User Guide <label_ranking_loss>`.

    .. versionadded:: 0.17
       A function *label_ranking_loss*

    Parameters
    ----------
    y_true : array or sparse matrix, shape = [n_samples, n_labels]
        True binary labels in binary indicator format.

    y_score : array, shape = [n_samples, n_labels]
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    loss : float

    References
    ----------
    .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
           Mining multi-label data. In Data mining and knowledge discovery
           handbook (pp. 667-685). Springer US.

    """
    y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr')
    y_score = check_array(y_score, ensure_2d=False)
    check_consistent_length(y_true, y_score, sample_weight)

    y_type = type_of_target(y_true)
    if y_type not in ("multilabel-indicator",):
        raise ValueError("{0} format is not supported".format(y_type))

    if y_true.shape != y_score.shape:
        raise ValueError("y_true and y_score have different shape")

    n_samples, n_labels = y_true.shape

    y_true = csr_matrix(y_true)

    loss = np.zeros(n_samples)
    for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])):
        # Sort and bin the label scores
        unique_scores, unique_inverse = np.unique(y_score[i],
                                                  return_inverse=True)
        true_at_reversed_rank = np.bincount(
            unique_inverse[y_true.indices[start:stop]],
            minlength=len(unique_scores))
        all_at_reversed_rank = np.bincount(unique_inverse,
                                        minlength=len(unique_scores))
        false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank

        # if the scores are ordered, it's possible to count the number of
        # incorrectly ordered paires in linear time by cumulatively counting
        # how many false labels of a given score have a score higher than the
        # accumulated true labels with lower score.
        loss[i] = np.dot(true_at_reversed_rank.cumsum(),
                         false_at_reversed_rank)

    n_positives = count_nonzero(y_true, axis=1)
    with np.errstate(divide="ignore", invalid="ignore"):
        loss /= ((n_labels - n_positives) * n_positives)

    # When there is no positive or no negative labels, those values should
    # be consider as correct, i.e. the ranking doesn't matter.
    loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0.

    return np.average(loss, weights=sample_weight)
示例#12
0
文件: cm.py 项目: chnlyi/i2b2
def multilabel_confusion_matrix(y_true,
                                y_pred,
                                sample_weight=None,
                                labels=None,
                                samplewise=False):

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
    check_consistent_length(y_true, y_pred, sample_weight)

    if y_type not in ("binary", "multiclass", "multilabel-indicator"):
        raise ValueError("%s is not supported" % y_type)

    present_labels = unique_labels(y_true, y_pred)
    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    if y_true.ndim == 1:
        if samplewise:
            raise ValueError("Samplewise metrics are not available outside of "
                             "multilabel classification.")

        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    else:
        sum_axis = 1 if samplewise else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.array_equal(labels, present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred,
                               axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)

    fp = pred_sum - tp_sum
    fn = true_sum - tp_sum
    tp = tp_sum

    if sample_weight is not None and samplewise:
        sample_weight = np.array(sample_weight)
        tp = np.array(tp)
        fp = np.array(fp)
        fn = np.array(fn)
        tn = sample_weight * y_true.shape[1] - tp - fp - fn
    elif sample_weight is not None:
        tn = sum(sample_weight) - tp - fp - fn
    elif samplewise:
        tn = y_true.shape[1] - tp - fp - fn
    else:
        tn = y_true.shape[0] - tp - fp - fn

    return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)