def test_solvers(X_sparse, solver, kind):
    X = X_sparse if kind == 'sparse' else X_sparse.toarray()
    svd_a = TruncatedSVD(30, algorithm="arpack")
    svd = TruncatedSVD(30, algorithm=solver, random_state=42)

    Xa = svd_a.fit_transform(X)[:, :6]
    Xr = svd.fit_transform(X)[:, :6]
    assert_allclose(Xa, Xr, rtol=2e-3)

    comp_a = np.abs(svd_a.components_)
    comp = np.abs(svd.components_)
    # All elements are equal, but some elements are more equal than others.
    assert_allclose(comp_a[:9], comp[:9], rtol=1e-3)
    assert_allclose(comp_a[9:], comp[9:], atol=1e-2)
def test_inverse_transform(algo, X_sparse):
    # We need a lot of components for the reconstruction to be "almost
    # equal" in all positions. XXX Test means or sums instead?
    tsvd = TruncatedSVD(n_components=52, random_state=42, algorithm=algo)
    Xt = tsvd.fit_transform(X_sparse)
    Xinv = tsvd.inverse_transform(Xt)
    assert_allclose(Xinv, X_sparse.toarray(), rtol=1e-1, atol=2e-1)
def test_sparse_formats(fmt, X_sparse):
    n_samples = X_sparse.shape[0]
    Xfmt = (X_sparse.toarray() if fmt == "dense" else getattr(
        X_sparse, "to" + fmt)())
    tsvd = TruncatedSVD(n_components=11)
    Xtrans = tsvd.fit_transform(Xfmt)
    assert Xtrans.shape == (n_samples, 11)
    Xtrans = tsvd.transform(Xfmt)
    assert Xtrans.shape == (n_samples, 11)
示例#4
0
def test_feature_union():
    # basic sanity check for feature union
    X = iris.data
    X -= X.mean(axis=0)
    y = iris.target
    svd = TruncatedSVD(n_components=2, random_state=0)
    select = SelectKBest(k=1)
    fs = FeatureUnion([("svd", svd), ("select", select)])
    fs.fit(X, y)
    X_transformed = fs.transform(X)
    assert X_transformed.shape == (X.shape[0], 3)

    # check if it does the expected thing
    assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X))
    assert_array_equal(X_transformed[:, -1],
                       select.fit_transform(X, y).ravel())

    # test if it also works for sparse input
    # We use a different svd object to control the random_state stream
    fs = FeatureUnion([("svd", svd), ("select", select)])
    X_sp = sparse.csr_matrix(X)
    X_sp_transformed = fs.fit_transform(X_sp, y)
    assert_array_almost_equal(X_transformed, X_sp_transformed.toarray())

    # Test clone
    fs2 = assert_no_warnings(clone, fs)
    assert fs.transformer_list[0][1] is not fs2.transformer_list[0][1]

    # test setting parameters
    fs.set_params(select__k=2)
    assert fs.fit_transform(X, y).shape == (X.shape[0], 4)

    # test it works with transformers missing fit_transform
    fs = FeatureUnion([("mock", Transf()), ("svd", svd), ("select", select)])
    X_transformed = fs.fit_transform(X, y)
    assert X_transformed.shape == (X.shape[0], 8)

    # test error if some elements do not support transform
    assert_raises_regex(
        TypeError, 'All estimators should implement fit and '
        'transform.*\\bNoTrans\\b', FeatureUnion,
        [("transform", Transf()), ("no_transform", NoTrans())])

    # test that init accepts tuples
    fs = FeatureUnion((("svd", svd), ("select", select)))
    fs.fit(X, y)
def test_truncated_svd_eq_pca(X_sparse):
    # TruncatedSVD should be equal to PCA on centered data

    X_dense = X_sparse.toarray()

    X_c = X_dense - X_dense.mean(axis=0)

    params = dict(n_components=10, random_state=42)

    svd = TruncatedSVD(algorithm='arpack', **params)
    pca = PCA(svd_solver='arpack', **params)

    Xt_svd = svd.fit_transform(X_c)
    Xt_pca = pca.fit_transform(X_c)

    assert_allclose(Xt_svd, Xt_pca, rtol=1e-9)
    assert_allclose(pca.mean_, 0, atol=1e-9)
    assert_allclose(svd.components_, pca.components_)
def test_singular_values_expected(solver):
    # Set the singular values and see what we get back
    rng = np.random.RandomState(0)
    n_samples = 100
    n_features = 110

    X = rng.randn(n_samples, n_features)

    pca = TruncatedSVD(n_components=3, algorithm=solver, random_state=rng)
    X_pca = pca.fit_transform(X)

    X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
    X_pca[:, 0] *= 3.142
    X_pca[:, 1] *= 2.718

    X_hat_pca = np.dot(X_pca, pca.components_)
    pca.fit(X_hat_pca)
    assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0], rtol=1e-14)
def test_explained_variance(X_sparse, kind, n_components, solver):
    X = X_sparse if kind == 'sparse' else X_sparse.toarray()
    svd = TruncatedSVD(n_components, algorithm=solver)
    X_tr = svd.fit_transform(X)
    # Assert that all the values are greater than 0
    assert_array_less(0.0, svd.explained_variance_ratio_)

    # Assert that total explained variance is less than 1
    assert_array_less(svd.explained_variance_ratio_.sum(), 1.0)

    # Test that explained_variance is correct
    total_variance = np.var(X_sparse.toarray(), axis=0).sum()
    variances = np.var(X_tr, axis=0)
    true_explained_variance_ratio = variances / total_variance

    assert_allclose(
        svd.explained_variance_ratio_,
        true_explained_variance_ratio,
    )
示例#8
0
def test_random_hasher():
    # test random forest hashing on circles dataset
    # make sure that it is linearly separable.
    # even after projected to two SVD dimensions
    # Note: Not all random_states produce perfect results.
    hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
    X, y = datasets.make_circles(factor=0.5)
    X_transformed = hasher.fit_transform(X)

    # test fit and transform:
    hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
    assert_array_equal(
        hasher.fit(X).transform(X).toarray(), X_transformed.toarray())

    # one leaf active per data point per forest
    assert X_transformed.shape[0] == X.shape[0]
    assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
    svd = TruncatedSVD(n_components=2)
    X_reduced = svd.fit_transform(X_transformed)
    linear_clf = LinearSVC()
    linear_clf.fit(X_reduced, y)
    assert linear_clf.score(X_reduced, y) == 1.
def test_integers(X_sparse):
    n_samples = X_sparse.shape[0]
    Xint = X_sparse.astype(np.int64)
    tsvd = TruncatedSVD(n_components=6)
    Xtrans = tsvd.fit_transform(Xint)
    assert Xtrans.shape == (n_samples, tsvd.n_components)