示例#1
0
def test_transform_target_regressor_2d_transformer(X, y):
    # Check consistency with transformer accepting only 2D array and a 1D/2D y
    # array.
    transformer = StandardScaler()
    regr = TransformedTargetRegressor(regressor=LinearRegression(),
                                      transformer=transformer)
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    if y.ndim == 1:  # create a 2D array and squeeze results
        y_tran = regr.transformer_.transform(y.reshape(-1, 1)).squeeze()
    else:
        y_tran = regr.transformer_.transform(y)
    _check_standard_scaled(y, y_tran)
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    if y.ndim == 1:  # create a 2D array and squeeze results
        lr.fit(X, transformer2.fit_transform(y.reshape(-1, 1)).squeeze())
    else:
        lr.fit(X, transformer2.fit_transform(y))
    y_lr_pred = lr.predict(X)
    assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
    assert_allclose(regr.regressor_.coef_, lr.coef_)
def test_plot_partial_dependence_passing_numpy_axes(pyplot, clf_boston,
                                                    boston):
    grid_resolution = 25
    feature_names = boston.feature_names.tolist()
    disp1 = plot_partial_dependence(clf_boston, boston.data,
                                    ['CRIM', 'ZN'],
                                    grid_resolution=grid_resolution,
                                    feature_names=feature_names)
    assert disp1.axes_.shape == (1, 2)
    assert disp1.axes_[0, 0].get_ylabel() == "Partial dependence"
    assert disp1.axes_[0, 1].get_ylabel() == ""
    assert len(disp1.axes_[0, 0].get_lines()) == 1
    assert len(disp1.axes_[0, 1].get_lines()) == 1

    lr = LinearRegression()
    lr.fit(boston.data, boston.target)

    disp2 = plot_partial_dependence(lr, boston.data,
                                    ['CRIM', 'ZN'],
                                    grid_resolution=grid_resolution,
                                    feature_names=feature_names,
                                    ax=disp1.axes_)

    assert np.all(disp1.axes_ == disp2.axes_)
    assert len(disp2.axes_[0, 0].get_lines()) == 2
    assert len(disp2.axes_[0, 1].get_lines()) == 2
示例#3
0
def test_omp_reaches_least_squares():
    # Use small simple data; it's a sanity check but OMP can stop early
    rng = check_random_state(0)
    n_samples, n_features = (10, 8)
    n_targets = 3
    X = rng.randn(n_samples, n_features)
    Y = rng.randn(n_samples, n_targets)
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
    lstsq = LinearRegression()
    omp.fit(X, Y)
    lstsq.fit(X, Y)
    assert_array_almost_equal(omp.coef_, lstsq.coef_)
示例#4
0
def test_linear_regression_multiple_outcome(random_state=0):
    # Test multiple-outcome linear regressions
    X, y = make_regression(random_state=random_state)

    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    reg = LinearRegression()
    reg.fit((X), Y)
    assert reg.coef_.shape == (2, n_features)
    Y_pred = reg.predict(X)
    reg.fit(X, y)
    y_pred = reg.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
示例#5
0
def test_linear_regression_sparse(random_state=0):
    # Test that linear regression also works with sparse data
    random_state = check_random_state(random_state)
    for i in range(10):
        n = 100
        X = sparse.eye(n, n)
        beta = random_state.rand(n)
        y = X * beta[:, np.newaxis]

        ols = LinearRegression()
        ols.fit(X, y.ravel())
        assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)

        assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)
示例#6
0
def test_linear_regression_sparse_multiple_outcome(random_state=0):
    # Test multiple-outcome linear regressions with sparse data
    random_state = check_random_state(random_state)
    X, y = make_sparse_uncorrelated(random_state=random_state)
    X = sparse.coo_matrix(X)
    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    ols = LinearRegression()
    ols.fit(X, Y)
    assert ols.coef_.shape == (2, n_features)
    Y_pred = ols.predict(X)
    ols.fit(X, y.ravel())
    y_pred = ols.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
示例#7
0
def test_linear_regression_sparse_equal_dense(normalize, fit_intercept):
    # Test that linear regression agrees between sparse and dense
    rng = check_random_state(0)
    n_samples = 200
    n_features = 2
    X = rng.randn(n_samples, n_features)
    X[X < 0.1] = 0.
    Xcsr = sparse.csr_matrix(X)
    y = rng.rand(n_samples)
    params = dict(normalize=normalize, fit_intercept=fit_intercept)
    clf_dense = LinearRegression(**params)
    clf_sparse = LinearRegression(**params)
    clf_dense.fit(X, y)
    clf_sparse.fit(Xcsr, y)
    assert clf_dense.intercept_ == pytest.approx(clf_sparse.intercept_)
    assert_allclose(clf_dense.coef_, clf_sparse.coef_)
def test_plot_partial_dependence_fig_deprecated(pyplot):
    # Make sure fig object is correctly used if not None
    X, y = make_regression(n_samples=50, random_state=0)
    clf = LinearRegression()
    clf.fit(X, y)

    fig = pyplot.figure()
    grid_resolution = 25

    msg = ("The fig parameter is deprecated in version 0.22 and will be "
           "removed in version 0.24")
    with pytest.warns(FutureWarning, match=msg):
        plot_partial_dependence(
            clf, X, [0, 1], target=0, grid_resolution=grid_resolution, fig=fig)

    assert pyplot.gcf() is fig
示例#9
0
def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples)**2 + 1
        sample_weights_OK_1 = 1.
        sample_weights_OK_2 = 2.

        reg = LinearRegression()

        # make sure the "OK" sample weights actually work
        reg.fit(X, y, sample_weights_OK)
        reg.fit(X, y, sample_weights_OK_1)
        reg.fit(X, y, sample_weights_OK_2)
示例#10
0
def test_ridge_vs_lstsq():
    # On alpha=0., Ridge and OLS yield the same solution.

    rng = np.random.RandomState(0)
    # we need more samples than features
    n_samples, n_features = 5, 4
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=0., fit_intercept=False)
    ols = LinearRegression(fit_intercept=False)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)
示例#11
0
def test_linear_regression_sample_weights():
    # TODO: loop over sparse data as well

    rng = np.random.RandomState(0)

    # It would not work with under-determined systems
    for n_samples, n_features in ((6, 5), ):

        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        for intercept in (True, False):

            # LinearRegression with explicit sample_weight
            reg = LinearRegression(fit_intercept=intercept)
            reg.fit(X, y, sample_weight=sample_weight)
            coefs1 = reg.coef_
            inter1 = reg.intercept_

            assert reg.coef_.shape == (X.shape[1], )  # sanity checks
            assert reg.score(X, y) > 0.5

            # Closed form of the weighted least square
            # theta = (X^T W X)^(-1) * X^T W y
            W = np.diag(sample_weight)
            if intercept is False:
                X_aug = X
            else:
                dummy_column = np.ones(shape=(n_samples, 1))
                X_aug = np.concatenate((dummy_column, X), axis=1)

            coefs2 = linalg.solve(
                X_aug.T.dot(W).dot(X_aug),
                X_aug.T.dot(W).dot(y))

            if intercept is False:
                assert_array_almost_equal(coefs1, coefs2)
            else:
                assert_array_almost_equal(coefs1, coefs2[1:])
                assert_almost_equal(inter1, coefs2[0])
示例#12
0
def test_linear_regression():
    # Test LinearRegression on a simple dataset.
    # a simple dataset
    X = [[1], [2]]
    Y = [1, 2]

    reg = LinearRegression()
    reg.fit(X, Y)

    assert_array_almost_equal(reg.coef_, [1])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [1, 2])

    # test it also for degenerate input
    X = [[1]]
    Y = [0]

    reg = LinearRegression()
    reg.fit(X, Y)
    assert_array_almost_equal(reg.coef_, [0])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [0])
示例#13
0
def test_transform_target_regressor_2d_transformer_multioutput():
    # Check consistency with transformer accepting only 2D array and a 2D y
    # array.
    X = friedman[0]
    y = np.vstack((friedman[1], friedman[1]**2 + 1)).T
    transformer = StandardScaler()
    regr = TransformedTargetRegressor(regressor=LinearRegression(),
                                      transformer=transformer)
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    y_tran = regr.transformer_.transform(y)
    _check_standard_scaled(y, y_tran)
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    lr.fit(X, transformer2.fit_transform(y))
    y_lr_pred = lr.predict(X)
    assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
    assert_allclose(regr.regressor_.coef_, lr.coef_)
示例#14
0
def test_transform_target_regressor_1d_transformer(X, y):
    # All transformer in scikit-learn expect 2D data. FunctionTransformer with
    # validate=False lift this constraint without checking that the input is a
    # 2D vector. We check the consistency of the data shape using a 1D and 2D y
    # array.
    transformer = FunctionTransformer(func=lambda x: x + 1,
                                      inverse_func=lambda x: x - 1)
    regr = TransformedTargetRegressor(regressor=LinearRegression(),
                                      transformer=transformer)
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    y_tran = regr.transformer_.transform(y)
    _check_shifted_by_one(y, y_tran)
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    lr.fit(X, transformer2.fit_transform(y))
    y_lr_pred = lr.predict(X)
    assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
    assert_allclose(regr.regressor_.coef_, lr.coef_)