示例#1
0
def test_multioutput_regression():
    y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
    y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])

    error = mean_squared_error(y_true, y_pred)
    assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.)

    error = mean_squared_error(y_true, y_pred, squared=False)
    assert_almost_equal(error, 0.645, decimal=2)

    error = mean_squared_log_error(y_true, y_pred)
    assert_almost_equal(error, 0.200, decimal=2)

    # mean_absolute_error and mean_squared_error are equal because
    # it is a binary problem.
    error = mean_absolute_error(y_true, y_pred)
    assert_almost_equal(error, (1. + 2. / 3) / 4.)

    error = median_absolute_error(y_true, y_pred)
    assert_almost_equal(error, (1. + 1.) / 4.)

    error = r2_score(y_true, y_pred, multioutput='variance_weighted')
    assert_almost_equal(error, 1. - 5. / 2)
    error = r2_score(y_true, y_pred, multioutput='uniform_average')
    assert_almost_equal(error, -.875)
示例#2
0
def test_regression_custom_weights():
    y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
    y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]

    msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6])
    rmsew = mean_squared_error(y_true,
                               y_pred,
                               multioutput=[0.4, 0.6],
                               squared=False)
    maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6])
    rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
    evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])

    assert_almost_equal(msew, 0.39, decimal=2)
    assert_almost_equal(rmsew, 0.62, decimal=2)
    assert_almost_equal(maew, 0.475, decimal=3)
    assert_almost_equal(rw, 0.94, decimal=2)
    assert_almost_equal(evsw, 0.94, decimal=2)

    # Handling msle separately as it does not accept negative inputs.
    y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
    y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]])
    msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
    msle2 = mean_squared_error(np.log(1 + y_true),
                               np.log(1 + y_pred),
                               multioutput=[0.3, 0.7])
    assert_almost_equal(msle, msle2, decimal=2)
示例#3
0
def test_regression_metrics(n_samples=50):
    y_true = np.arange(n_samples)
    y_pred = y_true + 1

    assert_almost_equal(mean_squared_error(y_true, y_pred), 1.)
    assert_almost_equal(
        mean_squared_log_error(y_true, y_pred),
        mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred)))
    assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.)
    assert_almost_equal(median_absolute_error(y_true, y_pred), 1.)
    assert_almost_equal(max_error(y_true, y_pred), 1.)
    assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2)
    assert_almost_equal(explained_variance_score(y_true, y_pred), 1.)
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=0),
                        mean_squared_error(y_true, y_pred))

    # Tweedie deviance needs positive y_pred, except for p=0,
    # p>=2 needs positive y_true
    # results evaluated by sympy
    y_true = np.arange(1, 1 + n_samples)
    y_pred = 2 * y_true
    n = n_samples
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=-1),
                        5 / 12 * n * (n**2 + 2 * n + 1))
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=1),
                        (n + 1) * (1 - np.log(2)))
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=2),
                        2 * np.log(2) - 1)
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=3 / 2),
                        ((6 * np.sqrt(2) - 8) / n) * np.sqrt(y_true).sum())
    assert_almost_equal(mean_tweedie_deviance(y_true, y_pred, power=3),
                        np.sum(1 / y_true) / (4 * n))
示例#4
0
def test_regression_multioutput_array():
    y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
    y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]

    mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
    mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
    r = r2_score(y_true, y_pred, multioutput='raw_values')
    evs = explained_variance_score(y_true, y_pred, multioutput='raw_values')

    assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2)
    assert_array_almost_equal(mae, [0.25, 0.625], decimal=2)
    assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
    assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)

    # mean_absolute_error and mean_squared_error are equal because
    # it is a binary problem.
    y_true = [[0, 0]] * 4
    y_pred = [[1, 1]] * 4
    mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
    mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
    r = r2_score(y_true, y_pred, multioutput='raw_values')
    assert_array_almost_equal(mse, [1., 1.], decimal=2)
    assert_array_almost_equal(mae, [1., 1.], decimal=2)
    assert_array_almost_equal(r, [0., 0.], decimal=2)

    r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values')
    assert_array_almost_equal(r, [0, -3.5], decimal=2)
    assert np.mean(r) == r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]],
                                  multioutput='uniform_average')
    evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]],
                                   multioutput='raw_values')
    assert_array_almost_equal(evs, [0, -1.25], decimal=2)

    # Checking for the condition in which both numerator and denominator is
    # zero.
    y_true = [[1, 3], [-1, 2]]
    y_pred = [[1, 4], [-1, 1]]
    r2 = r2_score(y_true, y_pred, multioutput='raw_values')
    assert_array_almost_equal(r2, [1., -3.], decimal=2)
    assert np.mean(r2) == r2_score(y_true,
                                   y_pred,
                                   multioutput='uniform_average')
    evs = explained_variance_score(y_true, y_pred, multioutput='raw_values')
    assert_array_almost_equal(evs, [1., -3.], decimal=2)
    assert np.mean(evs) == explained_variance_score(y_true, y_pred)

    # Handling msle separately as it does not accept negative inputs.
    y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
    y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]])
    msle = mean_squared_log_error(y_true, y_pred, multioutput='raw_values')
    msle2 = mean_squared_error(np.log(1 + y_true),
                               np.log(1 + y_pred),
                               multioutput='raw_values')
    assert_array_almost_equal(msle, msle2, decimal=2)
示例#5
0
def _test_ridge_loo(filter_):
    # test that can work with both dense or sparse matrices
    n_samples = X_diabetes.shape[0]

    ret = []

    fit_intercept = filter_ == DENSE_FILTER
    ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)

    # check best alpha
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    alpha_ = ridge_gcv.alpha_
    ret.append(alpha_)

    # check that we get same best alpha with custom loss_func
    f = ignore_warnings
    scoring = make_scorer(mean_squared_error, greater_is_better=False)
    ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv2.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with custom score_func
    func = lambda x, y: -mean_squared_error(x, y)
    scoring = make_scorer(func)
    ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv3.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with a scorer
    scorer = get_scorer('neg_mean_squared_error')
    ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
    ridge_gcv4.fit(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv4.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with sample weights
    if filter_ == DENSE_FILTER:
        ridge_gcv.fit(filter_(X_diabetes),
                      y_diabetes,
                      sample_weight=np.ones(n_samples))
        assert ridge_gcv.alpha_ == pytest.approx(alpha_)

    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T

    ridge_gcv.fit(filter_(X_diabetes), Y)
    Y_pred = ridge_gcv.predict(filter_(X_diabetes))
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge_gcv.predict(filter_(X_diabetes))

    assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred, rtol=1e-5)

    return ret
示例#6
0
def test_regression_metrics_at_limits():
    assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(mean_squared_error([0.], [0.], squared=False), 0.00, 2)
    assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(max_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2)
    assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2)
    err_msg = ("Mean Squared Logarithmic Error cannot be used when targets "
               "contain negative values.")
    with pytest.raises(ValueError, match=err_msg):
        mean_squared_log_error([-1.], [-1.])
    err_msg = ("Mean Squared Logarithmic Error cannot be used when targets "
               "contain negative values.")
    with pytest.raises(ValueError, match=err_msg):
        mean_squared_log_error([1., 2., 3.], [1., -2., 3.])
    err_msg = ("Mean Squared Logarithmic Error cannot be used when targets "
               "contain negative values.")
    with pytest.raises(ValueError, match=err_msg):
        mean_squared_log_error([1., -2., 3.], [1., 2., 3.])

    # Tweedie deviance error
    power = -1.2
    assert_allclose(mean_tweedie_deviance([0], [1.], power=power),
                    2 / (2 - power),
                    rtol=1e-3)
    with pytest.raises(ValueError,
                       match="can only be used on strictly positive y_pred."):
        mean_tweedie_deviance([0.], [0.], power=power)
    assert_almost_equal(mean_tweedie_deviance([0.], [0.], power=0), 0.00, 2)

    msg = "only be used on non-negative y_true and strictly positive y_pred."
    with pytest.raises(ValueError, match=msg):
        mean_tweedie_deviance([0.], [0.], power=1.0)

    power = 1.5
    assert_allclose(mean_tweedie_deviance([0.], [1.], power=power),
                    2 / (2 - power))
    msg = "only be used on non-negative y_true and strictly positive y_pred."
    with pytest.raises(ValueError, match=msg):
        mean_tweedie_deviance([0.], [0.], power=power)
    power = 2.
    assert_allclose(mean_tweedie_deviance([1.], [1.], power=power),
                    0.00,
                    atol=1e-8)
    msg = "can only be used on strictly positive y_true and y_pred."
    with pytest.raises(ValueError, match=msg):
        mean_tweedie_deviance([0.], [0.], power=power)
    power = 3.
    assert_allclose(mean_tweedie_deviance([1.], [1.], power=power),
                    0.00,
                    atol=1e-8)

    msg = "can only be used on strictly positive y_true and y_pred."
    with pytest.raises(ValueError, match=msg):
        mean_tweedie_deviance([0.], [0.], power=power)

    with pytest.raises(ValueError,
                       match="is only defined for power<=0 and power>=1"):
        mean_tweedie_deviance([0.], [0.], power=0.5)