def test_data_stream(test_path, package_path): test_file = os.path.join(package_path, 'src/skmultiflow/data/datasets/sea_stream.csv') raw_data = pd.read_csv(test_file) stream = DataStream(raw_data, name='Test') assert not stream._Y_is_defined stream.prepare_for_use() assert stream.n_remaining_samples() == 40000 expected_names = ['attrib1', 'attrib2', 'attrib3'] assert stream.feature_names == expected_names expected_targets = [0, 1] assert stream.target_values == expected_targets assert stream.target_names == ['class'] assert stream.n_features == 3 assert stream.n_cat_features == 0 assert stream.n_num_features == 3 assert stream.n_targets == 1 assert stream.get_data_info() == 'Test: 1 target(s), 2 classes' assert stream.has_more_samples() is True assert stream.is_restartable() is True # Load test data corresponding to first 10 instances test_file = os.path.join(test_path, 'sea_stream_file.npz') data = np.load(test_file) X_expected = data['X'] y_expected = data['y'] X, y = stream.next_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) X, y = stream.last_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) stream.restart() X, y = stream.next_sample(10) assert np.alltrue(X == X_expected) assert np.alltrue(y == y_expected) assert stream.n_targets == np.array(y).ndim assert stream.n_features == X.shape[1] assert 'stream' == stream._estimator_type expected_info = "DataStream(n_targets=-1, target_idx=1, cat_features=None, name='Test')" assert stream.get_info() == expected_info
def test_data_stream_X_y(test_path, package_path): test_file = os.path.join(package_path, 'src/skmultiflow/datasets/sea_stream.csv') raw_data = pd.read_csv(test_file) y = raw_data.iloc[:, -1:] X = raw_data.iloc[:, :-1] stream = DataStream(X, y) assert stream._Y_is_defined == True stream.prepare_for_use() assert stream.n_remaining_samples() == 40000 expected_names = ['attrib1', 'attrib2', 'attrib3'] assert stream.feature_names == expected_names expected_targets = [0, 1] assert stream.target_values == expected_targets assert stream.target_names == ['class'] assert stream.n_features == 3 assert stream.n_cat_features == 0 assert stream.n_num_features == 3 assert stream.n_targets == 1 assert stream.get_data_info() == '1 target(s), 2 target_values' assert stream.has_more_samples() is True assert stream.is_restartable() is True # Load test data corresponding to first 10 instances test_file = os.path.join(test_path, 'sea_stream.npz') data = np.load(test_file) X_expected = data['X'] y_expected = data['y'] X, y = stream.next_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) X, y = stream.last_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) stream.restart() X, y = stream.next_sample(10) assert np.alltrue(X == X_expected) assert np.alltrue(y == y_expected) assert stream.n_targets == np.array(y).ndim assert stream.n_features == X.shape[1]
def test_data_stream_X_y(test_path): test_file = os.path.join(test_path, 'sea_stream_file.csv') raw_data = pd.read_csv(test_file) y = raw_data.iloc[:, -1:] X = raw_data.iloc[:, :-1] stream = DataStream(X, y) assert stream._Y_is_defined assert stream.n_remaining_samples() == 40 expected_names = ['attrib1', 'attrib2', 'attrib3'] assert stream.feature_names == expected_names expected_targets = [0, 1] assert stream.target_values == expected_targets assert stream.target_names == ['class'] assert stream.n_features == 3 assert stream.n_cat_features == 0 assert stream.n_num_features == 3 assert stream.n_targets == 1 assert stream.get_data_info() == '1 target(s), 2 classes' assert stream.has_more_samples() is True assert stream.is_restartable() is True # Load test data corresponding to first 10 instances test_file = os.path.join(test_path, 'sea_stream_file.npz') data = np.load(test_file) X_expected = data['X'] y_expected = data['y'] X, y = stream.next_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) X, y = stream.last_sample() assert np.alltrue(X[0] == X_expected[0]) assert np.alltrue(y[0] == y_expected[0]) stream.restart() X, y = stream.next_sample(10) assert np.alltrue(X == X_expected) assert np.alltrue(y == y_expected) assert stream.n_targets == np.array(y).ndim assert stream.n_features == X.shape[1] # Ensure that the regression case is also covered y = raw_data.iloc[:, -1:] X = raw_data.iloc[:, :-1] y = y.astype('float64') stream = DataStream(X, y, name='Test') assert stream.task_type == 'regression' assert stream.get_data_info() == 'Test: 1 target(s)'