示例#1
0
def test_vfdr():

    learner = VFDR(ordered_rules=True,
                   rule_prediction='first_hit',
                   nominal_attributes=[3,4,5],
                   expand_criterion='info_gain',
                   remove_poor_atts=True,
                   min_weight=100,
                   nb_prediction=False)
    stream = AGRAWALGenerator(random_state=11)
    stream.prepare_for_use()

    cnt = 0
    max_samples = 5000
    predictions = array('i')
    proba_predictions = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            proba_predictions.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
                                       0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,
                                       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0])

    assert np.alltrue(predictions == expected_predictions)

    expected_info = 'VFDR: ordered_rules: True - grace_period: 200 - split_confidence: 1e-07 ' + \
                                  '- tie_threshold: 0.05 - remove_poor_atts: True - rule_prediction: first_hit ' + \
                                  '- nb_threshold: 0 - nominal_attributes: [3, 4, 5] - drift_detector: NoneType ' + \
                                  '- Predict using Naive Bayes: False'
    assert learner.get_info() == expected_info

    expected_model_description = 'Rule 0 :Att (2) <= 39.550| class :0  {0: 1365.7101742993455}\n' + \
                                 'Rule 1 :Att (2) <= 58.180| class :1  {1: 1269.7307449971418}\n' + \
                                 'Rule 2 :Att (2) <= 60.910| class :0  {0: 66.24158839706533, 1: 54.0}\n' + \
                                 'Default Rule :| class :0  {0: 1316.7584116029348}'

    expected_model_description_ = 'Rule 0 :Att (2) <= 39.550| class :0  {0: 1365.7101742993455}\n' + \
                                 'Rule 1 :Att (2) <= 58.180| class :1  {1: 1269.7307449971418}\n' + \
                                 'Rule 2 :Att (2) <= 60.910| class :0  {0: 66.241588397065328, 1: 54.0}\n' + \
                                 'Default Rule :| class :0  {0: 1316.7584116029348}'

    assert (learner.get_model_description() == expected_model_description) or \
           (learner.get_model_description() == expected_model_description_)

    expected_model_measurements = {'Number of rules: ': 3, 'model_size in bytes': 62295}
    expected_model_measurements_ = {'Number of rules: ': 3, 'model_size in bytes': 73167}

    if sys.version_info.minor != 6:
        assert (learner.get_model_measurements() == expected_model_measurements) or\
               (learner.get_model_measurements() == expected_model_measurements_)
示例#2
0
def test_vfdr_hellinger():

    learner = VFDR(ordered_rules=False,
                   rule_prediction='weighted_sum',
                   nominal_attributes=[3, 4, 5],
                   expand_criterion='hellinger',
                   remove_poor_atts=True,
                   min_weight=100,
                   nb_prediction=True)
    stream = AGRAWALGenerator(random_state=11)
    stream.prepare_for_use()

    cnt = 0
    max_samples = 5000
    predictions = array('i')
    proba_predictions = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            proba_predictions.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,
        0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,
        0
    ])

    assert np.alltrue(predictions == expected_predictions)

    expected_model_description = 'Rule 0 :Att (2) > 58.180 and Att (5) = 4.000| class :0  {0: 202.0, 1: 3.0}\n' + \
                                 'Rule 1 :Att (2) <= 41.820| class :0  {0: 1387.1186637804824, 1: 151.83928023717402}\n' + \
                                 'Default Rule :| class :1  {0: 512.8813362195176, 1: 1356.160719762826}'

    expected_model_description_ = 'Rule 0 :Att (2) > 58.180 and Att (5) = 4.000| class :0  {0: 202.0, 1: 3.0}\n' + \
                                 'Rule 1 :Att (2) <= 41.820| class :0  {0: 1387.1186637804824, 1: 151.83928023717402}\n' + \
                                 'Default Rule :| class :1  {0: 512.8813362195176, 1: 1356.1607197628259}'

    if sys.version_info.minor != 6:
        assert (learner.get_model_description() == expected_model_description) or \
               (learner.get_model_description() == expected_model_description_)
示例#3
0
def test_vfdr_foil():

    learner = VFDR(ordered_rules=False,
                   rule_prediction='weighted_sum',
                   nominal_attributes=[3, 4, 5],
                   expand_criterion='foil_gain',
                   remove_poor_atts=True,
                   min_weight=100,
                   nb_prediction=True)
    stream = AGRAWALGenerator(random_state=11)
    stream.prepare_for_use()

    cnt = 0
    max_samples = 5000
    predictions = array('i')
    proba_predictions = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            proba_predictions.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
        0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        0
    ])

    assert np.alltrue(predictions == expected_predictions)

    expected_model_description = 'Rule 0 :Att (2) <= 25.450 | class: 1| class :0  {0: 464.44730579120136}\n' + \
                                 'Rule 1 :Att (4) = 3.000 | class: 0| class :0  {0: 95.0, 1: 45.0}\n' + \
                                 'Rule 2 :Att (2) <= 30.910 | class: 1| class :0  {0: 330.68821225514125}\n' + \
                                 'Default Rule :| class :0  {0: 573.0, 1: 336.0}'

    assert (learner.get_model_description() == expected_model_description)
def test_vfdr_info_gain():

    learner = VeryFastDecisionRulesClassifier(ordered_rules=True,
                                              rule_prediction='first_hit',
                                              nominal_attributes=[3, 4, 5],
                                              expand_criterion='info_gain',
                                              remove_poor_atts=True,
                                              min_weight=100,
                                              nb_prediction=False)
    stream = AGRAWALGenerator(random_state=11)
    stream.prepare_for_use()

    cnt = 0
    max_samples = 5000
    predictions = array('i')
    proba_predictions = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            proba_predictions.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
                                       0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,
                                       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0])

    assert np.alltrue(predictions == expected_predictions)

    expected_info = "VeryFastDecisionRulesClassifier(drift_detector=None, expand_confidence=1e-07, " \
                    "expand_criterion='info_gain', grace_period=200, max_rules=1000, min_weight=100, " \
                    "nb_prediction=False, nb_threshold=0, nominal_attributes=[3, 4, 5], ordered_rules=True, " \
                    "remove_poor_atts=True, rule_prediction='first_hit', tie_threshold=0.05)"
    info = " ".join([line.strip() for line in learner.get_info().split()])
    assert info == expected_info

    expected_model_description_1 = 'Rule 0 :Att (2) <= 39.550| class :0  {0: 1365.7101742993455}\n' + \
                                   'Rule 1 :Att (2) <= 58.180| class :1  {1: 1269.7307449971418}\n' + \
                                   'Rule 2 :Att (2) <= 60.910| class :0  {0: 66.24158839706533, 1: 54.0}\n' + \
                                   'Default Rule :| class :0  {0: 1316.7584116029348}'

    expected_model_description_2 = 'Rule 0 :Att (2) <= 39.550| class :0  {0: 1365.7101742993455}\n' + \
                                   'Rule 1 :Att (2) <= 58.180| class :1  {1: 1269.7307449971418}\n' + \
                                   'Rule 2 :Att (2) <= 60.910| class :0  {0: 66.241588397065328, 1: 54.0}\n' + \
                                   'Default Rule :| class :0  {0: 1316.7584116029348}'

    assert (learner.get_model_description() == expected_model_description_1) or \
           (learner.get_model_description() == expected_model_description_2)

    expected_model_measurements_1 = {'Number of rules: ': 3, 'model_size in bytes': 61735}
    expected_model_measurements_2 = {'Number of rules: ': 3, 'model_size in bytes': 72607}

    if sys.platform == 'linux':
        assert (learner.get_model_measurements() == expected_model_measurements_1) or \
               (learner.get_model_measurements() == expected_model_measurements_2)
    else:
        # run for coverage
        learner.get_model_measurements()
示例#5
0
    def prepare_for_use(self):
        if self.generator in ['sea', 'sine']:
            self.concepts = [v for v in range(0, 4)]
        elif self.generator in ['stagger']:
            self.concepts = [v for v in range(0, 3)]
        elif self.generator in ['mixed']:
            self.concepts = [v for v in range(0, 2)]
        elif self.generator in ['led']:
            self.concepts = [v for v in range(0, 7)]
        elif self.generator in ['tree']:
            self.concepts = [2, 3, 4, 5, 6, 7, 8, 9, 10]

        if self.concept_shift_step > 0:
            for concept in self.all_concepts:
                stream = AGRAWALGenerator(classification_function=concept,
                                          random_state=self.random_state,
                                          balance_classes=False,
                                          perturbation=0.05)
                stream.prepare_for_use()
                self.streams.append(stream)
        else:

            for concept in self.concepts:
                if self.generator == 'agrawal':
                    stream = AGRAWALGenerator(classification_function=concept,
                                              random_state=self.random_state,
                                              balance_classes=False,
                                              perturbation=0.05)
                elif self.generator == 'sea':
                    stream = SEAGenerator(classification_function=concept,
                                          random_state=self.random_state,
                                          balance_classes=False,
                                          noise_percentage=0.05)
                elif self.generator == 'sine':
                    stream = SineGenerator(classification_function=concept,
                                           random_state=self.random_state,
                                           balance_classes=False,
                                           has_noise=False)
                elif self.generator == 'stagger':
                    stream = STAGGERGenerator(classification_function=concept,
                                              random_state=self.random_state,
                                              balance_classes=False)
                elif self.generator == 'mixed':
                    stream = MIXEDGenerator(classification_function=concept,
                                            random_state=self.random_state,
                                            balance_classes=False)
                elif self.generator == 'led':
                    stream = LEDGeneratorDrift(random_state=self.random_state,
                                               has_noise=True,
                                               n_drift_features=concept)
                elif self.generator == 'tree':
                    stream = RandomTreeGenerator(tree_random_state=concept,
                                                 sample_random_state=concept,
                                                 max_tree_depth=concept+2,
                                                 min_leaf_depth=concept,
                                                 n_classes=2)
                else:
                    print(f"unknown stream generator {self.generator}")
                    exit()

                stream.prepare_for_use()
                self.streams.append(stream)

        self.cur_stream = self.streams[0]
        self.drift_stream = self.streams[1]

        stream = self.cur_stream
        self.n_samples = stream.n_samples
        self.n_targets = stream.n_targets
        self.n_features = stream.n_features
        self.n_num_features = stream.n_num_features
        self.n_cat_features = stream.n_cat_features
        self.n_classes = stream.n_classes
        self.cat_features_idx = stream.cat_features_idx
        self.feature_names = stream.feature_names
        self.target_names = stream.target_names
        self.target_values = stream.target_values
        self.n_targets = stream.n_targets
        self.name = 'drifting' + stream.name

        print(f"len: {len(self.concepts)}")
        self.concept_probs = \
                self.__get_poisson_probs(len(self.concepts), self.lam)
示例#6
0
Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1uHKbJ3KLUITTHJRxegzbTvA_-6M7eO5v
"""

!pip install -U scikit-multiflow

from skmultiflow.data import AGRAWALGenerator
from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
import numpy as np

# 1. Create a stream
stream = AGRAWALGenerator()
stream.prepare_for_use()

# 2. Instantiate the HoeffdingTree classifier
ht = HoeffdingTree()

# # 3. Setup the evaluator
# evaluator = EvaluatePrequential(show_plot=False,
#                                 pretrain_size=500,
#                                 max_samples=500)

# # 4. Run evaluation
# evaluator.evaluate(stream=stream, model=ht)

def base_classifier(e, U, I, L, D, wd, ws):
  return print("I am here")