def test_KNN_adwin(test_path, package_path):
    test_file = os.path.join(package_path,
                             'src/skmultiflow/data/datasets/sea_big.csv')
    stream = FileStream(test_file, -1, 1)
    stream.prepare_for_use()
    learner = KNNAdwin(n_neighbors=8, leaf_size=40, max_window_size=2000)

    cnt = 0
    max_samples = 5000
    predictions = []
    correct_predictions = 0

    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            if y[0] == predictions[-1]:
                correct_predictions += 1
        learner.partial_fit(X, y)
        cnt += 1
    performance = correct_predictions / len(predictions)
    expected_predictions = [
        1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
        1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
        1
    ]
    expected_correct_predictions = 40
    expected_performance = 0.8163265306122449

    assert np.alltrue(predictions == expected_predictions)
    assert np.isclose(expected_performance, performance)
    assert correct_predictions == expected_correct_predictions
    def __init__(self,
                 base_estimator=KNNAdwin(),
                 n_estimators=10,
                 sampling_rate=3,
                 algorithm=1,
                 drift_detection=True,
                 random_state=None):

        super().__init__()
        # default values
        self.ensemble = None
        self.n_estimators = None
        self.classes = None
        self.random_state = None
        self._init_n_estimators = n_estimators
        self._init_random_state = random_state
        self.sampling_rate = sampling_rate
        self.algorithm = algorithm
        self.drift_detection = drift_detection
        self.adwin_ensemble = None
        self.lam_sc = None
        self.lam_pos = None
        self.lam_neg = None
        self.lam_sw = None
        self.epsilon = None
        self.__configure(base_estimator)
示例#3
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              cost_positive=1,
              cost_negative=0.1,
              drift_detection=True,
              random_state=None):
     super().__init__()
     # default values
     self.ensemble = None
     self.actual_n_estimators = None
     self.classes = None
     self._random_state = None
     self.base_estimator = base_estimator
     self.n_estimators = n_estimators
     self.cost_positive = cost_positive
     self.cost_negative = cost_negative
     self.drift_detection = drift_detection
     self.random_state = random_state
     self.adwin_ensemble = None
     self.lam_fn = None
     self.lam_fp = None
     self.lam_sum = None
     self.lam_sw = None
     self.werr = None
     self.epsilon = None
     self.__configure()
示例#4
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              sampling_rate=1,
              drift_detection=True,
              random_state=None):
     super().__init__(base_estimator, n_estimators, sampling_rate,
                      drift_detection, random_state)
示例#5
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              random_state=None):
     super().__init__(base_estimator, n_estimators, random_state)
     # default values
     self.adwin_ensemble = None
     self.__configure()
def demo(instances=2000):
    """ _test_comparison_prequential
    
    This demo will test a prequential evaluation when more than one learner is 
    passed, which makes it a comparison task.
    
    Parameters
    ----------
    instances: int
        The evaluation's maximum number of instances.
     
    """
    # Stream setup
    stream = FileStream("../data/datasets/covtype.csv", -1, 1)
    # stream = SEAGenerator(classification_function=2, sample_seed=53432, balance_classes=False)
    stream.prepare_for_use()
    # Setup the classifier
    clf = SGDClassifier()
    # classifier = KNNAdwin(n_neighbors=8, max_window_size=2000,leaf_size=40, categorical_list=None)
    # classifier = OzaBaggingAdwin(base_estimator=KNN(n_neighbors=8, max_window_size=2000, leaf_size=30, categorical_list=None))
    clf_one = KNNAdwin(n_neighbors=8, max_window_size=1000, leaf_size=30)
    # clf_two = KNN(n_neighbors=8, max_window_size=1000, leaf_size=30)
    # clf_two = LeverageBagging(base_estimator=KNN(), n_estimators=2)

    t_one = OneHotToCategorical([[10, 11, 12, 13],
                                 [
                                     14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
                                     24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
                                     34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
                                     44, 45, 46, 47, 48, 49, 50, 51, 52, 53
                                 ]])
    # t_two = OneHotToCategorical([[10, 11, 12, 13],
    #                        [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
    #                        36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]])

    pipe_one = Pipeline([('one_hot_to_categorical', t_one), ('KNN', clf_one)])
    # pipe_two = Pipeline([('one_hot_to_categorical', t_two), ('KNN', clf_two)])

    classifier = [clf, pipe_one]
    # classifier = SGDRegressor()
    # classifier = PerceptronMask()

    # Setup the pipeline
    # pipe = Pipeline([('Classifier', classifier)])

    # Setup the evaluator
    evaluator = EvaluatePrequential(
        pretrain_size=2000,
        output_file='test_comparison_prequential.csv',
        max_samples=instances,
        batch_size=1,
        n_wait=200,
        max_time=1000,
        show_plot=True,
        metrics=['performance', 'kappa_t'])

    # Evaluate
    evaluator.evaluate(stream=stream, model=classifier)
示例#7
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              cost_positive=1,
              cost_negative=0.1,
              drift_detection=True,
              random_state=None):
     super().__init__(base_estimator, n_estimators, cost_positive,
                      cost_negative, drift_detection, random_state)
示例#8
0
 def __init__(self, base_estimator=KNNAdwin(), n_estimators=10, random_state=None):
     super().__init__()
     # default values
     self.ensemble = None
     self.n_estimators = None
     self.classes = None
     self.random_state = None
     self._init_n_estimators = n_estimators
     self._init_random_state = random_state
     self.__configure(base_estimator)
示例#9
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              random_state=None):
     super().__init__()
     # default values
     self.ensemble = None
     self.actual_n_estimators = None
     self.classes = None
     self._random_state = None  # This is the actual random_state object used internally
     self.base_estimator = base_estimator
     self.n_estimators = n_estimators
     self.random_state = random_state
     self.__configure()
示例#10
0
def demo():
    """ _test_oza_bagging

    This demo tests the OzaBagging classifier using KNNAdwin classifiers, 
    on samples given by a SEAGenerator. 

    The test computes the performance of the OzaBagging classifier as well 
    as the time to create the structure and classify max_samples (5000 by 
    default) instances.

    """
    logging.basicConfig(format='%(message)s', level=logging.INFO)
    warnings.filterwarnings("ignore", ".*Passing 1d.*")
    stream = SEAGenerator(1, noise_percentage=.067, random_state=1)
    stream.prepare_for_use()
    clf = OzaBagging(base_estimator=KNNAdwin(n_neighbors=8, max_window_size=2000, leaf_size=30), n_estimators=2, random_state=1)
    sample_count = 0
    correctly_classified = 0
    max_samples = 5000
    train_size = 8
    first = True
    if train_size > 0:
        X, y = stream.next_sample(train_size)
        clf.partial_fit(X, y, classes=stream.target_values)
        first = False

    while sample_count < max_samples:
        if sample_count % (max_samples/20) == 0:
            logging.info('%s%%', str((sample_count//(max_samples/20)*5)))
        X, y = stream.next_sample()
        my_pred = clf.predict(X)

        if first:
            clf.partial_fit(X, y, classes=stream.target_values)
            first = False
        else:
            clf.partial_fit(X, y)

        if my_pred is not None:
            if y[0] == my_pred[0]:
                correctly_classified += 1

        sample_count += 1

    print(str(sample_count) + ' samples analyzed.')
    print('My performance: ' + str(correctly_classified / sample_count))
示例#11
0
def test_pipeline(test_path):
    n_categories = 5

    # Load test data generated using:
    # RandomTreeGenerator(tree_random_state=1, sample_random_state=1,
    #                     n_cat_features=n_categories, n_num_features=0)
    test_file = os.path.join(test_path, 'data-one-hot.npz')
    data = np.load(test_file)
    X = data['X']
    y = data['y']
    stream = DataStream(data=X, y=y)
    stream.prepare_for_use()

    # Setup transformer
    cat_att_idx = [[i + j for i in range(n_categories)]
                   for j in range(0, n_categories * n_categories, n_categories)
                   ]
    transformer = OneHotToCategorical(categorical_list=cat_att_idx)

    # Set up the classifier
    classifier = KNNAdwin(n_neighbors=2, max_window_size=50, leaf_size=40)
    # Setup the pipeline
    pipe = Pipeline([('one-hot', transformer), ('KNNAdwin', classifier)])
    # Setup the evaluator
    evaluator = EvaluatePrequential(show_plot=False,
                                    pretrain_size=10,
                                    max_samples=100)
    # Evaluate
    evaluator.evaluate(stream=stream, model=pipe)

    metrics = evaluator.get_mean_measurements()

    expected_accuracy = 0.5555555555555556
    assert np.isclose(expected_accuracy, metrics[0].accuracy_score())

    expected_kappa = 0.11111111111111116
    assert np.isclose(expected_kappa, metrics[0].kappa_score())
    print(pipe.get_info())
    expected_info = "Pipeline:\n" \
                    "[OneHotToCategorical(categorical_list=[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9],\n" \
                    "                                      [10, 11, 12, 13, 14],\n" \
                    "                                      [15, 16, 17, 18, 19],\n" \
                    "                                      [20, 21, 22, 23, 24]])\n" \
                    "KNNAdwin(leaf_size=40, max_window_size=50, n_neighbors=2,\n" \
                    "         nominal_attributes=None)]"
    assert pipe.get_info() == expected_info
示例#12
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              sampling_rate=2,
              drift_detection=True,
              random_state=None):
     super().__init__()
     # default values
     self.ensemble = None
     self.n_estimators = None
     self.classes = None
     self.random_state = None
     self.n_samples = None
     self.drift_detection = drift_detection
     self.adwin_ensemble = None
     self._init_n_estimators = n_estimators
     self._init_random_state = random_state
     self.sampling_rate = sampling_rate
     self.__configure(base_estimator)
示例#13
0
 def __init__(self,
              base_estimator=KNNAdwin(),
              n_estimators=10,
              random_state=None):
     super().__init__(base_estimator, n_estimators, random_state)
def demo():
    """ _test_knn_adwin

    This demo tests the KNNAdwin classifier on a file stream, which gives 
    instances coming from a SEA generator. 
    
    The test computes the performance of the KNNAdwin classifier as well as 
    the time to create the structure and classify max_samples (10000 by 
    default) instances.
    
    """
    start = timer()
    logging.basicConfig(format='%(message)s', level=logging.INFO)
    # warnings.filterwarnings("ignore", ".*Passing 1d.*")
    stream = FileStream('../data/datasets/sea_big.csv', -1, 1)
    # stream = RandomRBFGeneratorDrift(change_speed=41.00, n_centroids=50, model_random_state=32523423,
    #                                  sample_seed=5435, n_classes=2, num_att=10, num_drift_centroids=50)
    stream.prepare_for_use()
    t = OneHotToCategorical([[10, 11, 12, 13],
                             [
                                 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
                                 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
                                 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
                                 47, 48, 49, 50, 51, 52, 53
                             ]])
    t2 = OneHotToCategorical([[10, 11, 12, 13],
                              [
                                  14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
                                  25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
                                  36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
                                  47, 48, 49, 50, 51, 52, 53
                              ]])

    # knn = KNN(n_neighbors=8, max_window_size=2000, leaf_size=40)
    knn = KNNAdwin(n_neighbors=8, leaf_size=40, max_window_size=2000)
    # pipe = Pipeline([('one_hot_to_categorical', t), ('KNN', knn)])

    compare = KNeighborsClassifier(n_neighbors=8,
                                   algorithm='kd_tree',
                                   leaf_size=40,
                                   metric='euclidean')
    # pipe2 = Pipeline([('one_hot_to_categorical', t2), ('KNN', compare)])
    first = True
    train = 200
    if train > 0:
        X, y = stream.next_sample(train)
        # pipe.partial_fit(X, y, classes=stream.target_values)
        # pipe.partial_fit(X, y, classes=stream.target_values)
        # pipe2.fit(X, y)

        knn.partial_fit(X, y, classes=stream.target_values)
        compare.fit(X, y)
        first = False
    n_samples = 0
    max_samples = 10000
    my_corrects = 0
    compare_corrects = 0

    while n_samples < max_samples:
        if n_samples % (max_samples / 20) == 0:
            logging.info('%s%%', str((n_samples // (max_samples / 20) * 5)))
        X, y = stream.next_sample()
        # my_pred = pipe.predict(X)
        my_pred = knn.predict(X)
        # my_pred = [1]
        if first:
            # pipe.partial_fit(X, y, classes=stream.target_values)
            # pipe.partial_fit(X, y, classes=stream.target_values)
            knn.partial_fit(X, y, classes=stream.target_values)
            first = False
        else:
            # pipe.partial_fit(X, y)
            knn.partial_fit(X, y)
        # compare_pred = pipe2.predict(X)
        compare_pred = compare.predict(X)
        if y[0] == my_pred[0]:
            my_corrects += 1
        if y[0] == compare_pred[0]:
            compare_corrects += 1
        n_samples += 1

    end = timer()

    print('Evaluation time: ' + str(end - start))
    print(str(n_samples) + ' samples analyzed.')
    print('My performance: ' + str(my_corrects / n_samples))
    print('Compare performance: ' + str(compare_corrects / n_samples))
示例#15
0
def test_knn_adwin():
    stream = ConceptDriftStream(stream=SEAGenerator(random_state=1),
                                drift_stream=SEAGenerator(random_state=2, classification_function=2),
                                random_state=1, position=250, width=10)
    stream.prepare_for_use()
    learner = KNNAdwin(n_neighbors=8, leaf_size=40, max_window_size=200)

    cnt = 0
    max_samples = 1000
    predictions = array('i')
    correct_predictions = 0
    wait_samples = 20

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            if y[0] == predictions[-1]:
                correct_predictions += 1
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
                                       0, 1, 1, 0, 1, 1, 0, 1, 0, 1,
                                       1, 1, 1, 0, 1, 0, 0, 1, 1, 1,
                                       1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       0, 1, 1, 1, 0, 1, 0, 1, 1])
    assert np.alltrue(predictions == expected_predictions)

    expected_correct_predictions = 46
    assert correct_predictions == expected_correct_predictions

    learner.reset()
    assert learner.window.n_samples == 0

    expected_info = 'KNNAdwin: - n_neighbors: 8 - max_window_size: 200 - leaf_size: 40'
    assert learner.get_info() == expected_info

    stream.restart()

    X, y = stream.next_sample(max_samples)
    learner.fit(X[:950], y[:950])
    predictions = learner.predict(X[951:])

    correct_predictions = sum(np.array(predictions) == y[951:])
    expected_correct_predictions = 47
    assert correct_predictions == expected_correct_predictions

    assert type(learner.predict(X)) == np.ndarray
    assert type(learner.predict_proba(X)) == np.ndarray