def __init__(self, targets=None, dtype=np.int64): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.sample_count = 0 self.targets = targets self.exact_match_count = 0 self.j_sum = 0
def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.targets = targets self.window_size = window_size self.exact_match_count = 0 self.j_sum = 0 self.true_labels = FastComplexBuffer(window_size, self.n_targets) self.predictions = FastComplexBuffer(window_size, self.n_targets)
class WindowMultiTargetClassificationMeasurements(BaseObject): """ This class will maintain a fixed sized window of the newest information about one classifier. It can provide, as requested, any of the relevant current metrics about the classifier, measured inside the window. This class will keep updated statistics about a multi output classifier, using a confusion matrix adapted to multi output problems, the MOLConfusionMatrix, alongside other of the classifier's relevant attributes stored in ComplexFastBuffer objects, which will simulate fixed sized windows. Its functionality is somewhat similar to those of the MultiTargetClassificationMeasurements class. The difference is that the statistics kept by this class are local, or partial, while the statistics kept by the MultiTargetClassificationMeasurements class are global. At any given moment, it can compute the following statistics: hamming_loss, hamming_score, exact_match and j_index. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. window_size: int (Default: 200) The width of the window. Determines how many samples the object can see. Examples -------- """ def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.targets = targets self.window_size = window_size self.exact_match_count = 0 self.j_sum = 0 self.true_labels = FastComplexBuffer(window_size, self.n_targets) self.predictions = FastComplexBuffer(window_size, self.n_targets) def reset(self): if self.targets is not None: self.n_targets = len(self.targets) else: self.n_targets = 0 self.confusion_matrix.restart(self.n_targets) self.last_true_label = None self.last_prediction = None self.exact_match_count = 0 self.j_sum = 0 self.true_labels = FastComplexBuffer(self.window_size, self.n_targets) self.predictions = FastComplexBuffer(self.window_size, self.n_targets) def add_result(self, y_true, y_pred): """ Updates its statistics with the results of a prediction. Adds the result to the MOLConfusionMatrix, and updates the ComplexFastBuffer objects. Parameters ---------- y_true: list or numpy.ndarray The true label. y_pred: list or numpy.ndarray The classifier's prediction """ self.last_true_label = y_true self.last_prediction = y_pred m = 0 if hasattr(y_true, 'size'): m = y_true.size elif hasattr(y_true, 'append'): m = len(y_true) self.n_targets = m for i in range(m): self.confusion_matrix.update(i, y_true[i], y_pred[i]) old_true = self.true_labels.add_element(y_true) old_predict = self.predictions.add_element(y_pred) if (old_true is not None) and (old_predict is not None): for i in range(m): self.confusion_matrix.remove(old_true[0][i], old_predict[0][i]) def get_last(self): return self.last_true_label, self.last_prediction def get_hamming_loss(self): """ Computes the window/current Hamming loss, which is the complement of the Hamming score metric. Returns ------- float The window/current hamming loss. """ return 1.0 - self.get_hamming_score() def get_hamming_score(self): """ Computes the window/current Hamming score, defined as the number of correctly classified labels divided by the total number of labels classified. Returns ------- float The window/current hamming score. """ return hamming_score(self.true_labels.get_queue(), self.predictions.get_queue()) def get_exact_match(self): """ Computes the window/current exact match metric. This is the most strict multi output metric, defined as the number of samples that have all their labels correctly classified, divided by the total number of samples. Returns ------- float The window/current exact match metric. """ return exact_match(self.true_labels.get_queue(), self.predictions.get_queue()) def get_j_index(self): """ Computes the window/current Jaccard index, also known as the intersection over union metric. It is calculated by dividing the number of correctly classified labels by the union of predicted and true labels. Returns ------- float The window/current Jaccard index. """ return j_index(self.true_labels.get_queue(), self.predictions.get_queue()) def get_total_sum(self): return self.confusion_matrix.get_total_sum() @property def matrix(self): return self.confusion_matrix.matrix @property def sample_count(self): return self.true_labels.get_current_size() def get_info(self): return '{}:'.format(type(self).__name__) + \ ' - sample_count: {}'.format(self.sample_count) + \ ' - hamming_loss: {:.6f}'.format(self.get_hamming_loss()) + \ ' - hamming_score: {:.6f}'.format(self.get_hamming_score()) + \ ' - exact_match: {:.6f}'.format(self.get_exact_match()) + \ ' - j_index: {:.6f}'.format(self.get_j_index()) def get_class_type(self): return 'measurement'
class MultiTargetClassificationMeasurements(BaseObject): """ This class will keep updated statistics about a multi output classifier, using a confusion matrix adapted to multi output problems, the MOLConfusionMatrix, alongside other relevant attributes. The performance metrics for multi output tasks are different from those used for normal classification tasks. Thus, the statistics provided by this class are different from those provided by the ClassificationMeasurements and from the WindowClassificationMeasurements. At any given moment, it can compute the following statistics: hamming_loss, hamming_score, exact_match and j_index. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. Examples -------- """ def __init__(self, targets=None, dtype=np.int64): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.sample_count = 0 self.targets = targets self.exact_match_count = 0 self.j_sum = 0 def reset(self): if self.targets is not None: self.n_targets = len(self.targets) else: self.n_targets = 0 self.confusion_matrix.restart(self.n_targets) self.last_true_label = None self.last_prediction = None self.sample_count = 0 self.exact_match_count = 0 self.j_sum = 0 def add_result(self, y_true, y_pred): """ Updates its statistics with the results of a prediction. Adds the result to the MOLConfusionMatrix and update exact_matches and j-index sum counts. Parameters ---------- y_true: list or numpy.ndarray The true label. y_pred: list or numpy.ndarray The classifier's prediction """ self.last_true_label = y_true self.last_prediction = y_pred m = 0 if isinstance(y_true, np.ndarray): m = y_true.size elif isinstance(y_true, list): m = len(y_true) self.n_targets = m equal = True for i in range(m): self.confusion_matrix.update(i, y_true[i], y_pred[i]) # update exact_match count if y_true[i] != y_pred[i]: equal = False # update exact_match if equal: self.exact_match_count += 1 # update j_index count inter = sum((y_true * y_pred) > 0) * 1. union = sum((y_true + y_pred) > 0) * 1. if union > 0: self.j_sum += inter / union elif np.sum(y_true) == 0: self.j_sum += 1 self.sample_count += 1 def get_last(self): return self.last_true_label, self.last_prediction def get_hamming_loss(self): """ Computes the Hamming loss, which is the complement of the Hamming score metric. Returns ------- float The hamming loss. """ return 1.0 - self.get_hamming_score() def get_hamming_score(self): """ Computes the Hamming score, defined as the number of correctly classified labels divided by the total number of labels classified. Returns ------- float The Hamming score. """ try: return self.confusion_matrix.get_sum_main_diagonal() / ( self.sample_count * self.n_targets) except ZeroDivisionError: return 0.0 def get_exact_match(self): """ Computes the exact match metric. This is the most strict multi output metric, defined as the number of samples that have all their labels correctly classified, divided by the total number of samples. Returns ------- float The exact match metric. """ return self.exact_match_count / self.sample_count def get_j_index(self): """ Computes the Jaccard index, also known as the intersection over union metric. It is calculated by dividing the number of correctly classified labels by the union of predicted and true labels. Returns ------- float The Jaccard index. """ return self.j_sum / self.sample_count def get_total_sum(self): return self.confusion_matrix.get_total_sum() @property def _matrix(self): return self.confusion_matrix.matrix def get_info(self): return '{}:'.format(type(self).__name__) + \ ' - sample_count: {}'.format(self.sample_count) + \ ' - hamming_loss: {:.6f}'.format(self.get_hamming_loss()) + \ ' - hamming_score: {:.6f}'.format(self.get_hamming_score()) + \ ' - exact_match: {:.6f}'.format(self.get_exact_match()) + \ ' - j_index: {:.6f}'.format(self.get_j_index()) def get_class_type(self): return 'measurement'