示例#1
0
                                'valid_set': BatchIterator('continuous'),
                                'test_set': BatchIterator('continuous')
                            },
                            device="/cpu:0")

# Create Network
#---------------

# we use a batch_size of 64 and use the dataset.datum shape to
# obtain the shape of 1 observation and create the input shape
K = 8
my_layer = layers.custom_layer(ops.Dense, ops.BatchNorm, ops.Activation)

dnn = sknet.network.Network(name='simple_model')

dnn.append(ops.RandomCrop(dataset.images, (28, 28)))

dnn.append(
    layers.Conv2D(dnn[-1], [(64, 3, 3), {
        'b': None,
        'pad': 'same'
    }], [[0, 2, 3]], [0.01]))
dnn.append(my_layer(dnn[-1], [10, {'b': None}], [0], [tf.identity]))

dnn.append(
    layers.Conv2DPool(dnn[-2], [(192, 3, 3), {
        'b': None,
        'pad': 'same'
    }], [[0, 2, 3]], [0.01], [(1, 2, 2)]))
dnn.append(my_layer(dnn[-1], [10, {'b': None}], [0], [tf.identity]))
示例#2
0
        return tf.abs(tensor[:,c])/norm
    distances = tf.map_fn(doit,tf.range(tensor.shape.as_list()[1]),
                                        dtype=tf.float32)
    return tf.reduce_min(distances,0)




# Create Network
#---------------

dnn = sknet.Network(name='simple_model')

if DATA_AUGMENTATION:
    dnn.append(ops.RandomAxisReverse(dataset.images,axis=[-1]))
    dnn.append(ops.RandomCrop(dnn[-1],(28,28),seed=10))
    start_op = 2
else:
    dnn.append(dataset.images)
    start_op = 1
if MODEL=='cnn':
    sknet.networks.ConvSmall(dnn,dataset.n_classes)
elif MODEL=='dense':
    dnn.append(sknet.ops.Dense(dnn[-1],4096))
    dnn.append(sknet.ops.BatchNorm(dnn[-1],0))
    dnn.append(sknet.ops.Activation(dnn[-1],0.1))

    dnn.append(sknet.ops.Dense(dnn[-1],2048))
    dnn.append(sknet.ops.BatchNorm(dnn[-1],0))
    dnn.append(sknet.ops.Activation(dnn[-1],0.1))
示例#3
0
    'train_set': 'random_see_all',
    'test_set': 'continuous'
})

dataset.create_placeholders(iterator, device="/cpu:0")

# Create Network
#---------------

# we use a batch_size of 64 and use the dataset.datum shape to
# obtain the shape of 1 observation and create the input shape

dnn = sknet.Network(name='simple_model')

dnn.append(ops.RandomAxisReverse(dataset.images, axis=[-1]))
dnn.append(ops.RandomCrop(dnn[-1], (28, 28)))

if MODEL == 'smallcnn':
    sknet.networks.ConvSmall(dnn, dataset.n_classes)
    all_layers = dnn[2:-1].as_list()
elif MODEL == 'largecnn':
    sknet.networks.ConvLarge(dnn, dataset.n_classes)
    all_layers = dnn[2:-1].as_list()
else:
    sknet.networks.Resnet(dnn, dataset.n_classes, D=2, W=2)
    all_layers = [
        layer for layer in dnn[2:-1] if type(layer) == sknet.ops.Merge
    ]

prediction = dnn[-1]