示例#1
0
    def fit(
        self, adjacency: Union[sparse.csr_matrix,
                               np.ndarray]) -> 'LaplacianEmbedding':
        """Compute the graph embedding.

        Parameters
        ----------
        adjacency :
              Adjacency matrix of the graph (symmetric matrix).

        Returns
        -------
        self: :class:`LaplacianEmbedding`
        """
        adjacency = check_format(adjacency).asfptype()
        check_square(adjacency)
        check_symmetry(adjacency)
        n = adjacency.shape[0]

        regularize: bool = not (self.regularization is None
                                or self.regularization == 0.)
        check_scaling(self.scaling, adjacency, regularize)

        if regularize:
            solver: EigSolver = LanczosEig()
        else:
            solver = set_solver(self.solver, adjacency)
        n_components = 1 + check_n_components(self.n_components, n - 2)

        weights = adjacency.dot(np.ones(n))
        regularization = self.regularization
        if regularization:
            if self.relative_regularization:
                regularization = regularization * weights.sum() / n**2
            weights += regularization * n
            laplacian = LaplacianOperator(adjacency, regularization)
        else:
            weight_diag = sparse.diags(weights, format='csr')
            laplacian = weight_diag - adjacency

        solver.which = 'SM'
        solver.fit(matrix=laplacian, n_components=n_components)
        eigenvalues = solver.eigenvalues_[1:]
        eigenvectors = solver.eigenvectors_[:, 1:]

        embedding = eigenvectors.copy()

        if self.scaling:
            eigenvalues_inv_diag = diag_pinv(eigenvalues**self.scaling)
            embedding = eigenvalues_inv_diag.dot(embedding.T).T

        if self.normalized:
            embedding = normalize(embedding, p=2)

        self.embedding_ = embedding
        self.eigenvalues_ = eigenvalues
        self.eigenvectors_ = eigenvectors
        self.regularization_ = regularization

        return self
示例#2
0
    def fit(self, adjacency: Union[sparse.csr_matrix, np.ndarray]) -> 'GSVD':
        """Compute the embedding of the graph.

        Parameters
        ----------
        adjacency :
            Adjacency or biadjacency matrix of the graph.

        Returns
        -------
        self: :class:`GSVD`
        """
        adjacency = check_format(adjacency).asfptype()
        n_row, n_col = adjacency.shape
        n_components = check_n_components(self.n_components,
                                          min(n_row, n_col) - 1)

        if isinstance(self.solver, str):
            self.solver = set_svd_solver(self.solver, adjacency)
        regularization = self.regularization
        if regularization:
            if self.relative_regularization:
                regularization = regularization * np.sum(
                    adjacency.data) / (n_row * n_col)
            adjacency_reg = RegularizedAdjacency(adjacency, regularization)
        else:
            adjacency_reg = adjacency

        weights_row = adjacency_reg.dot(np.ones(n_col))
        weights_col = adjacency_reg.T.dot(np.ones(n_row))
        diag_row = diag_pinv(np.power(weights_row, self.factor_row))
        diag_col = diag_pinv(np.power(weights_col, self.factor_col))
        self.solver.fit(
            safe_sparse_dot(diag_row, safe_sparse_dot(adjacency_reg,
                                                      diag_col)), n_components)

        singular_values = self.solver.singular_values_
        index = np.argsort(-singular_values)
        singular_values = singular_values[index]
        singular_vectors_left = self.solver.singular_vectors_left_[:, index]
        singular_vectors_right = self.solver.singular_vectors_right_[:, index]
        singular_left_diag = sparse.diags(
            np.power(singular_values, 1 - self.factor_singular))
        singular_right_diag = sparse.diags(
            np.power(singular_values, self.factor_singular))

        embedding_row = diag_row.dot(singular_vectors_left)
        embedding_col = diag_col.dot(singular_vectors_right)
        embedding_row = singular_left_diag.dot(embedding_row.T).T
        embedding_col = singular_right_diag.dot(embedding_col.T).T

        if self.normalized:
            embedding_row = normalize(embedding_row, p=2)
            embedding_col = normalize(embedding_col, p=2)

        self.embedding_row_ = embedding_row
        self.embedding_col_ = embedding_col
        self.embedding_ = embedding_row
        self.singular_values_ = singular_values
        self.singular_vectors_left_ = singular_vectors_left
        self.singular_vectors_right_ = singular_vectors_right
        self.regularization_ = regularization
        self.weights_col_ = weights_col

        return self
示例#3
0
    def fit(self, adjacency: Union[sparse.csr_matrix,
                                   np.ndarray]) -> 'Spectral':
        """Compute the graph embedding.

        Parameters
        ----------
        adjacency :
              Adjacency matrix of the graph (symmetric matrix).

        Returns
        -------
        self: :class:`Spectral`
        """
        adjacency = check_format(adjacency).asfptype()
        check_square(adjacency)
        check_symmetry(adjacency)
        n = adjacency.shape[0]

        solver = set_solver(self.solver, adjacency)
        n_components = 1 + check_n_components(self.n_components, n - 2)

        regularize: bool = not (self.regularization is None
                                or self.regularization == 0.)
        check_scaling(self.scaling, adjacency, regularize)

        weights = adjacency.dot(np.ones(n))
        regularization = self.regularization
        if regularization:
            if self.relative_regularization:
                regularization = regularization * weights.sum() / n**2
            weights += regularization * n

        # Spectral decomposition of the normalized adjacency matrix
        weights_inv_sqrt_diag = diag_pinv(np.sqrt(weights))

        if regularization:
            norm_adjacency = NormalizedAdjacencyOperator(
                adjacency, regularization)
        else:
            norm_adjacency = weights_inv_sqrt_diag.dot(
                adjacency.dot(weights_inv_sqrt_diag))

        solver.which = 'LA'
        solver.fit(matrix=norm_adjacency, n_components=n_components)
        eigenvalues = solver.eigenvalues_
        index = np.argsort(-eigenvalues)[1:]  # skip first eigenvalue
        eigenvalues = eigenvalues[index]
        eigenvectors = weights_inv_sqrt_diag.dot(solver.eigenvectors_[:,
                                                                      index])

        embedding = eigenvectors.copy()

        if self.scaling:
            eigenvalues_inv_diag = diag_pinv((1 - eigenvalues)**self.scaling)
            embedding = eigenvalues_inv_diag.dot(embedding.T).T

        if self.normalized:
            embedding = normalize(embedding, p=2)

        self.embedding_ = embedding
        self.eigenvalues_ = eigenvalues
        self.eigenvectors_ = eigenvectors
        self.regularization_ = regularization

        return self
示例#4
0
    def fit(self,
            input_matrix: Union[sparse.csr_matrix, np.ndarray],
            force_bipartite: bool = False) -> 'Spectral':
        """Compute the graph embedding.

        If the input matrix :math:`B` is not square (e.g., biadjacency matrix of a bipartite graph) or not symmetric
        (e.g., adjacency matrix of a directed graph), use the adjacency matrix

        :math:`A  = \\begin{bmatrix} 0 & B \\\\ B^T & 0 \\end{bmatrix}`

        and return the embedding for both rows and columns of the input matrix :math:`B`.

        Parameters
        ----------
        input_matrix :
              Adjacency matrix or biadjacency matrix of the graph.
        force_bipartite : bool (default = ``False``)
            If ``True``, force the input matrix to be considered as a biadjacency matrix.

        Returns
        -------
        self: :class:`Spectral`
        """
        # input
        adjacency, self.bipartite = get_adjacency(
            input_matrix,
            allow_directed=False,
            force_bipartite=force_bipartite)
        n = adjacency.shape[0]

        # regularization
        regularization = self._get_regularization(self.regularization,
                                                  adjacency)
        self.regularized = regularization > 0

        # laplacian
        laplacian = Laplacian(adjacency, regularization,
                              self.normalized_laplacian)

        # spectral decomposition
        n_components = check_n_components(self.n_components, n - 2) + 1
        solver = LanczosEig(which='SM')
        solver.fit(matrix=laplacian, n_components=n_components)
        index = np.argsort(
            solver.eigenvalues_)[1:]  # increasing order, skip first

        eigenvalues = solver.eigenvalues_[index]
        eigenvectors = solver.eigenvectors_[:, index]

        # embedding
        if self.normalized_laplacian:
            embedding = laplacian.norm_diag.dot(eigenvectors)
        else:
            embedding = eigenvectors.copy()

        # output
        self.embedding_ = embedding
        self.eigenvalues_ = eigenvalues
        self.eigenvectors_ = eigenvectors
        if self.bipartite:
            self._split_vars(input_matrix.shape)

        return self
示例#5
0
    def fit(self, adjacency: Union[sparse.csr_matrix,
                                   np.ndarray]) -> 'Spectral':
        """Compute the graph embedding.

        Parameters
        ----------
        adjacency :
              Adjacency matrix of the graph (symmetric matrix).

        Returns
        -------
        self: :class:`Spectral`
        """
        adjacency = check_format(adjacency).asfptype()
        check_square(adjacency)
        check_symmetry(adjacency)
        n = adjacency.shape[0]

        if self.solver == 'auto':
            solver = auto_solver(adjacency.nnz)
            if solver == 'lanczos':
                self.solver: EigSolver = LanczosEig()
            else:  # pragma: no cover
                self.solver: EigSolver = HalkoEig()

        n_components = check_n_components(self.n_components, n - 2)
        n_components += 1

        if self.equalize and (self.regularization is None
                              or self.regularization
                              == 0.) and not is_connected(adjacency):
            raise ValueError(
                "The option 'equalize' is valid only if the graph is connected or with regularization."
                "Call 'fit' either with 'equalize' = False or positive 'regularization'."
            )

        weights = adjacency.dot(np.ones(n))
        regularization = self.regularization
        if regularization:
            if self.relative_regularization:
                regularization = regularization * weights.sum() / n**2
            weights += regularization * n

        if self.normalized_laplacian:
            # Finding the largest eigenvalues of the normalized adjacency is easier for the solver than finding the
            # smallest eigenvalues of the normalized laplacian.
            weights_inv_sqrt_diag = diag_pinv(np.sqrt(weights))

            if regularization:
                norm_adjacency = NormalizedAdjacencyOperator(
                    adjacency, regularization)
            else:
                norm_adjacency = weights_inv_sqrt_diag.dot(
                    adjacency.dot(weights_inv_sqrt_diag))

            self.solver.which = 'LA'
            self.solver.fit(matrix=norm_adjacency, n_components=n_components)
            eigenvalues = 1 - self.solver.eigenvalues_
            # eigenvalues of the Laplacian in increasing order
            index = np.argsort(eigenvalues)[1:]
            # skip first eigenvalue
            eigenvalues = eigenvalues[index]
            # eigenvectors of the Laplacian, skip first eigenvector
            eigenvectors = np.array(
                weights_inv_sqrt_diag.dot(self.solver.eigenvectors_[:, index]))

        else:
            if regularization:
                laplacian = LaplacianOperator(adjacency, regularization)
            else:
                weight_diag = sparse.diags(weights, format='csr')
                laplacian = weight_diag - adjacency

            self.solver.which = 'SM'
            self.solver.fit(matrix=laplacian, n_components=n_components)
            eigenvalues = self.solver.eigenvalues_[1:]
            eigenvectors = self.solver.eigenvectors_[:, 1:]

        embedding = eigenvectors.copy()

        if self.equalize:
            eigenvalues_sqrt_inv_diag = diag_pinv(np.sqrt(eigenvalues))
            embedding = eigenvalues_sqrt_inv_diag.dot(embedding.T).T

        if self.barycenter:
            eigenvalues_diag = sparse.diags(eigenvalues)
            subtract = eigenvalues_diag.dot(embedding.T).T
            if not self.normalized_laplacian:
                weights_inv_diag = diag_pinv(weights)
                subtract = weights_inv_diag.dot(subtract)
            embedding -= subtract

        if self.normalized:
            embedding = normalize(embedding, p=2)

        self.embedding_ = embedding
        self.eigenvalues_ = eigenvalues
        self.eigenvectors_ = eigenvectors
        self.regularization_ = regularization

        return self